• Title/Summary/Keyword: Molten Carbonate Fuel Cell(MCFC)

Search Result 154, Processing Time 0.029 seconds

Corrosion characteristics of separator for MCFC (용융탄산염형 연료전지의 분리판 부식특성)

  • 김귀열
    • Electrical & Electronic Materials
    • /
    • v.9 no.8
    • /
    • pp.831-835
    • /
    • 1996
  • The molten carbonate fuel cell has conspicuous features and high potential in being used as an energy converter of various fuels to electricity and heat. However, the MCFC which use strongly corrosive molten carbonate at 650[.deg. C] have many problem. Systematic investigation on corrosion behavior of Fe-based Cr has been done in ($62{\times}38$)mol % (Li+K)$CO_3$ melt at 923K by using steady state polarization and electrochemical impedance spectroscopy method. It was found that the corrosion current of these Fe-based alloys decreased with increasing Cr content, and this was attributed to the formation of $LiCrO_2$ layer at the surface .

  • PDF

Development of 250kW Power Conditioning System for Molten Carbonate Fuel Cell Power Generation System (250kW급 용융탄산염 연료전지 발전시스템용 전력변환기 개발)

  • Lee, J.H.;Jung, H.J.;Baek, S.T.;Kang, H.H.;Chung, J.M.;Suh, I.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.231-233
    • /
    • 2007
  • 본 논문은 신 발전방식 중 하나인 용융탄산염형 연료전지(Molten Carbonate Fuel Cell, 이하 MCFC) 발전시스템에서 생성된 전력을 계통에 안정적으로 변환, 주입하기 위한 계통연계형 전력변환기를 설계, 제작하고 성능 시험을 수행한 결과이다. 250kW급 MCFC 시스템의 정격 사양 및 스택의 운전 형태를 기반으로 250kW급 전력변환기 구조 및 단위기기를 설계하였고 전력변환기는 크게 DC/DC 컨버터부와 DC/AC 인버터부로 구성된다. 본 논문은 MCFC 발전 시스템에 적용되는 전력변환기(Power Conditioning System, 이하 PCS)를 제작하고 성능을 확인하는데 목적이 있다.

  • PDF

Numerical Studies of Cell Temperature Distribution in MCFC Stack According to Electrical Loads (전기 부하에 따른 용융탄산염 연료전지 스택 온도 분포에 관한 수치 해석 연구)

  • Kim, Do-Hyung;Kim, Beom-Joo;Lee, Jung-Hyun;Kang, Seung-Won;Lim, Hee-Chun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.4
    • /
    • pp.258-263
    • /
    • 2010
  • A numerical stack model has been developed to predict the temperature at a constant-load operation of molten carbonate fuel cell stacks. For the validity of the model, the simulated results with several boundary conditions were compared in the cell temperature data obtained from 75 kW class MCFC stack operation. It was shown that the simulated results with the existing boundary condition, which the stack outlet temperature was fixed at $650^{\circ}C$, didn't match well with the measured data. On the other hand, the stack model with the outlet temperature modified by the outlet manifold temperature measured from the stack under several electric loads was found to explain the measured cell temperature distribution well. The results show that the model can be used to predict the cell temperature distribution in the stacks by the measurement of the manifold outlet temperature.

A study on the interararanular corrosion behavir of stainless steel in molten carbonate salt EPR test (EPR 방법에 의한 용융탄산염 내에서의 스텐인레스강의 입계부식에 관한 연구)

  • 황응림;서병환;강성군
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.4
    • /
    • pp.223-230
    • /
    • 1998
  • The separator for a molten carbonate fuel cell(MCFC) is mode of stainless steel and known to the suscepibility to corrosion due to environments of high temperature molten carbonte electrolyte. Considering the sensitization of stainless steel in the temperature range of 425~$815^{\circ}C$, the separator is expected to be sensitized so that the interganular corrosion (IGC) occurs during the cell operation at about $650^{\circ}C$. In this study, EPR(electrochemical potentiokinetic reactivation) technique was examined by relating some elements(mainly C and Cr) to the degree of sensitization of austenitic stainless steels in the molten carbonate salt at $650^{\circ}C$and the possible mechanism of intergranular corrosion was analyzed.

  • PDF

Fabrication and effect of different temperatures on the supported thin Anode for molten carbonate fuel cell (용융탄산염 연료전지에서 지지체를 사용한 얇은 연료극의 제작과 각기 다른 온도에서의 영향)

  • Park, Dongnyeok;Giulio, Nicola Di;Seo, Dongho;Yoon, Sungpil;Shul, Yonggun;Han, Jonghee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.82.1-82.1
    • /
    • 2010
  • Recently, Molten carbonate fuel cells(MCFCs) have been developing to get a good durability and economic feasibility for commercialization. To achieve these objectives, the cost of nickel based electrodes should be reduced. Regular anode thickness used in MCFCs is normally 0.7mm. Thus, in our study, the purpose was to reduce anode thickness up to 0.3 mm keeping MCFC performance on standard levels. In-situ sintering has been used, with 2 different fabrication methods (method A and B) and 2 different supports (support 1 and 2). Voltage losses at different temperature (600,620,640,$650^{\circ}C$) and after 1000 hours showed the higher performance that can be obtained using method B and support 2. After single cell test, an open-circuit voltage(OCV) of 1.075 V and a closed-circuit voltage(CCV) of 0.829V were obtained, at current density of $150mV/cm^2$. Also the voltage loss ratio at different cell temperature was lower in the case of method B and support 2. According to these results, the cost of anode fabrication can be reduced in the future, contributing for the economical feasibility of MCFCs.

  • PDF

Development of a 25 kW Externally Reforming MCFC Sys (25 kW 외부개질형 용융탄산염 연료전지 발전시스템 개발)

  • 임희천;고준호;이충곤;유영성;안교상;강병삼;서혜경;홍성안;최영태
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.219-223
    • /
    • 1999
  • 1993년부터 시작한 선도기술개발 사업의 1단계 사업은 용융탄산염형 연료전지(Molten Carbonate Fuel Cell ; MCFC) 기초 기술기반을 확립하기 위하여 단위전지 요소기술 제작, 소규모 스택의 운전 및 운용 등을 중심으로 연구개발이 진행되어 1996년에는 2 kW급 MCFC 시스템을 개발 3,250 시간 장기 운전평가를 실시 하므로써 소기의 목적을 달성하였다.(중략)

  • PDF

Design of a 100 kW MCFC Stack and Power Generation System (100 kW급 용융탄산염 연료전지 스택 및 발전 시스템 설계)

  • Koh, Joon-Ho;Kang, Byoung-Sam;Lim, Hee-Chun
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.146-151
    • /
    • 2001
  • Several design parameters for a 100 kW molten carbonate fuel cell stack was described. Approximately 170 cells are required to generate 100 kW at a current density of $125\;mA/cm^{2}$ with $6000\;cm^{2}$ cells. An overall heat balance was calculated to predict exit temperature. In order to limit the stack temperature in the range of $600-700^{\circ}C$, current load cannot exceed $75\;mA/cm^{2}$ at atmospheric operation. The 100 kW power is expected only under pressurization. Recycle of cathode gas by more than 50% is recommended to run the stack at $125\;mA/cm^{2}$ and 3 atm. Manifolds should be designed based on gas flow rates for the suggested operating condition.

  • PDF

The effect of the matrix thickness on the long term performance of MCFC (매트릭스 두께가 MCFC 장기 성능에 미치는 영향)

  • Kim, Yun-Young;Han, Jong-Hee;Yoon, Sung-Pil;Nam, Suk-Woo;Lim, Tae-Hoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.2
    • /
    • pp.170-179
    • /
    • 2005
  • Electrolyte loss is considered as one of the major obstacles limiting the life time of molten carbonate fuel cells (MCFCs). Unit cells with an effective area of 100 $cm^2$ were prepared and were operated to determine the optimum matrix thickness which contains the maximum amount of electrolyte without serious preformance loss caused by high resistance. Matrices with different thickness, 1.45, 1.8, and 2.3 mm, were used in unit cells and those cells were operared about 5000, 10000, and 4000 hrs. The unit cell used 1.8 mm thick matrix showed 0.85 V (at 150 mA/$cm^2$) as the intial performance and this cell voltage is not lower than the cell voltage obtained in the cell with 1 mm thick matrix. This cell was operated for 10000 hrs. The cell used 1.45 mm thick matrices showed 16.6 % in the electrolyte loss after 5000 hr operation. In the case of the cell with 2.3 mm thick matrix, the initial cell voltage was below 0.80 V (at 150 mA/$cm^2$). For thermal cycle test, the gas crossover amount of unit cell used 1.8 mm thick matrix was much less than that of the cell with 1.0 mm thick matrix.

A Study on the Proper Number of Banks of Parallel Operation of Transformer in Large-scale Power Plants Using the High Temperature Fuel Cell Considering the Internal Failure (내부고장을 고려한 고온형 연료전지 대규모 발전단지의 병렬운전 변압기 적정 뱅크수에 관한 연구)

  • Chong, Young-Whan;Chai, Hui-Seok;Sung, In-Je;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.3
    • /
    • pp.26-31
    • /
    • 2014
  • High temperature fuel cell system, such as molten carbonate fuel cells(MCFC) and solid oxide fuel cells(SOFC), are capable of operating at MW rated power output. The power output change of high temperature fuel cell imposes the thermal and mechanical stresses on the fuel cell stack. To minimize the thermal-mechanical stresses on the stack and increase the systems reliability, we should divide the power plant configuration to several banks. However, the improvement of reliability in fuel cell power plant system causes an increase of the investment cost, for example, replacement costs, labor costs, and so on. For this reason - the balance between investment and reliability improvement - many studies about the appropriate level of investment have been conducted. In this paper, we evaluate the cost for operation and installation, the benefit for electric energy and thermal energy sales, and the system reliability for several cases : these cases relate with the bank configuration.

Influence of the Thin Anode Geometry on the Performance of Molten Carbonate Fuel Cells (얇은 연료극 구조가 용융탄산염 연료전지 성능에 미치는 영향)

  • Seo, Dong-Ho;Park, Dong-Nyeok;Yoon, Sung-Pil;Han, Jong-Hee;Oh, In-Hwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.5
    • /
    • pp.599-608
    • /
    • 2011
  • The Ni-Al anodes of the molten carbonate fuel cell (MCFC) with three different structures were successfully fabricated in order to reduce the thickness of the anode down to 0.3 mm; one was the non-supported anode made by a conventional tape casting method, and others were the supported anodes made by lamination or direct casting on the nickel screen. It was seen from the physical analyses and cell operation that the supported thin anodes made by direct casting showed good mechanical strength and cell performance because of a good contact between the anode materials and the support. The single cell using the above anode showed the cell voltage of 0.858 V at the current density of 150$mA/cm^2$ with the nitrogen cross-over of only 0.6% at the operation time of 1,000 h, which was similar to the performance of the conventional thick (0.7 mm) anode. The ability to utilize a thin configuration of anode should cut down the amount of nickel alloy and consequently reduce its manufacturing cost.