• 제목/요약/키워드: Molten Carbonate

Search Result 229, Processing Time 0.024 seconds

알루미늄 코팅처리 스테인레스강의 융탄산염 내부식성 (The corrosion-resistant of Al-coated xstainless in molten carbonate)

  • 조남웅;장세기;전재호;신정철
    • 한국표면공학회지
    • /
    • 제31권1호
    • /
    • pp.3-11
    • /
    • 1998
  • Molten Carbonate Fuel cell is a promising new type electric power generation system which can achieve high efficiency, lower matrrial cost and high operating temperature Making internal reforming possible. Although the development of the MCEC is progressing rapidly toward commercialization, two important tchological problems such as dissolution of NiO cathode and not corrosion of metallic separator plate must be resolved. Because MCFC is operated at $650^{\circ}C$ and the electrolyte is very corrosive, corrosion-resistance of separator plated against oxidation abd molten carbonate is required. Al-coating on separator material for corrosion-resistance was carried out by painting, thermal spraying. hot dipping and vacuum vapour deposition. The corrosion of Al-coated STS 316S and 316L in molten carbonate at $700^{\circ}C$was studied. Vacuum vapour deposition and thermal spraing for Al-coating on STS 310S and 316L were the most effective methods for protecting thestainless steel corrosion in molten carbonate.

  • PDF

Study of Corrosion behavior of the Separator for MCFC

  • Kim, Gwi-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • 제8권6호
    • /
    • pp.283-285
    • /
    • 2007
  • The molten carbonate fuel cell has conspicuous feature and high potential in being used as an energy converter of various fuel to electricity and heat. However, the molten carbonate fuel cell which use strongly corrosive molten carbonate at $650^{\circ}C$ have many problem. Systematic investigation on corrosion behavior of stainless steels has been done 62 mole% $Li_2CO_3$ and 38 mole% $K_2CO_3$ melt at 923 K by using steady-state polarization method and electrochemical impedance spectroscopy method. It was found that SUS 310L and Al coating specimen may be the best choice among the alloys tested in this study for molten carbonate fuel cell component material.

코팅과 열처리가 연료전지 분리판의 내식성에 미치는 영향 (Effect of the Coaling and Annealing on Noncorrosive of Fuel Cell Separator)

  • 김귀열
    • 한국전기전자재료학회논문지
    • /
    • 제20권11호
    • /
    • pp.1000-1003
    • /
    • 2007
  • The molten carbonate fuel cell has conspicuous feature and high potential in being used as an energy converter of various fuel to electricity and heat. However, the molten carbonate fuel cell which use strongly corrosive molten carbonate at $650^{\circ}C$ have many problem. One of the material problems is the severe corrosion of the metallic components, such as the separator. The effect of coating and annealing treatment on the corrosion for SUS 304 and SUS 430 which are the candidate materials for molten carbonate fuel cell hardware has been investigated in molten carbonate at $650^{\circ}C$ by using steady state polarization and electrochemical impedance spectroscopy method. It was found that the corrosion current of these SUS 304 and SUS 430 decreased with coating and annealing treatment.

Lifetime Evaluation of AI-Fe Coating in Wet-seal Environment of MCFC

  • Jun, JaeHo;Jun, JoongHwan;Kim, KyooYoung
    • Corrosion Science and Technology
    • /
    • 제3권4호
    • /
    • pp.161-165
    • /
    • 2004
  • Aluminum source in an Al-Fe coating reacts with molten carbonate and develops a protective $LiAlO_2$ layer on the coating surface during operation of molten carbonate fuel cells (MCFC). However, if aluminum content in an Al-Fe coating decreases to a critical level for some reasons during MCFC operation, a stable and continuous $LiAlO_2$ protective layer can no longer be maintained. The aluminum content in an Al-Fe coating can be depleted by two different processes; one is by corrosion reaction at the surface between the aluminum source in the coating and molten carbonate, and the other is inward-diffusion of aluminum atoms within the coating into a substrate. In these two respects, therefore, the decreasing rate of aluminum concentration in an Al-Fe coating was measured, and then the influences of these two aspects on the lifetime of Al-Fe coating were investigated, respectively.

공기-탄산용융염 이상흐름계에서의 흐름영역전이 (Flow Regime Transition in Air-Molten Carbonate Salt Two-Phase Flow System)

  • 조용준;양희철;은희철;강용
    • Korean Chemical Engineering Research
    • /
    • 제47권4호
    • /
    • pp.481-487
    • /
    • 2009
  • 본 연구에서는 기체(공기)-액체(용융탄산염) 이상 흐름계(용융염산화 공정)에서 공기유속(0.05~0.22 m/sec) 및 탄산용융염의 온도($870{\sim}970^{\circ}C$)가 흐름영역 전이특성에 미치는 영향을 공기 체류량의 drift-flux 및 차압요동의 추계학적 해석을 통하여 규명하였다. 흐름영역이 시작되는 공기 체류량값은 공기체류량-drift flux 그래프를 통하여 구하였다. 흐름영역 전이가 시작되는 공기 체류량 값은 탄산용융염의 온도가 증가함에 따라서 증가하였는데 이는 탄산용융염의 온도가 증가함에 따라서 액상의 점도와 표면장력의 감소로 인한 계의 안정화 때문이며 계의 특성에 가장 큰 영향을 미치는 기포특성(평균기포크기 및 상승속도)을 drift-flux 모델식을 적용하여 추정하였다. 흐름영역전이 특성을 좀 더 정량적으로 특성화하기 위하여 차압요동신호를 상공간투영 및 Kolmogorov entropy를 이용하여 해석하였다. Kolmogorov entropy는 탄산용융염의 온도가 증가함에 따라 감소하였으며 공기유속이 증가함에 따라서 증가하였으나 흐름영역에 따라서 다른 경향성을 나타내었고 흐름영역이 시작되는 공기유속값은 공기체류량의 drift-flux 해석으로 유도된 결과와 동일하였다.

EPR 방법에 의한 용융탄산염 내에서의 스텐인레스강의 입계부식에 관한 연구 (A study on the interararanular corrosion behavir of stainless steel in molten carbonate salt EPR test)

  • 황응림;서병환;강성군
    • 한국표면공학회지
    • /
    • 제31권4호
    • /
    • pp.223-230
    • /
    • 1998
  • The separator for a molten carbonate fuel cell(MCFC) is mode of stainless steel and known to the suscepibility to corrosion due to environments of high temperature molten carbonte electrolyte. Considering the sensitization of stainless steel in the temperature range of 425~$815^{\circ}C$, the separator is expected to be sensitized so that the interganular corrosion (IGC) occurs during the cell operation at about $650^{\circ}C$. In this study, EPR(electrochemical potentiokinetic reactivation) technique was examined by relating some elements(mainly C and Cr) to the degree of sensitization of austenitic stainless steels in the molten carbonate salt at $650^{\circ}C$and the possible mechanism of intergranular corrosion was analyzed.

  • PDF

The Corrosion Behavior of Li/K Carbonate Melts with CaCO3 Additives on Separator Plate in the Molten Carbonate Fuel Cell in the Anode Environments

  • Cho, Kyehyun;Lee, Chul-Hwan;Sung, Zu-Hwan
    • Corrosion Science and Technology
    • /
    • 제5권4호
    • /
    • pp.129-136
    • /
    • 2006
  • High temperature corrosion behavior of AISI-type 316L stainless steel for the MCFC(molten carbonate fuel cell) bipolar application was studied by immersion test and penetration attack method in anode environment ($650^{\circ}C$, $Li_2CO_3/K_2CO_3=62/38$ mol%, $H_2/CO_2=80/20$ vol%) without or with different $CaCO_3$ content. Not only immersion test method but also morphological observation of samples in the carbonate melts are adopted as experimental methods. With aid of the morphological observation of cross section of samples immersed in a carbonate melt was possible to obtain penetration attack. The concentration effect of $CaCO_3$ inhibitor was investigated in order to verify the optimum concentration for practical application in MCFC stack operation. The corrosion rate in the presence of $CaCO_3$ was proven to be decreased as a function of $CaCO_3$ concentration. The corrosion rate in the presence of $CaCO_3$ was measured with a value of 6.9 mpy which is 2.4 times lower than that of inhibitor-free electrolyte. The cross section microscopy revealed that the internal penetration by oxidation in molten carbonate is very severe. In this case, the attack was occurred not only dissolution loss in the electrolyte by corrosion reaction but also weight gain through oxide layer by internal penetration.

용융탄산염 연료전지용 $LiCoO_2$ 산화전극의 제조방법에 따른 특성 (The Effect of Fabrication Process on the Characteristics of $LiCoO_2$ Cathode for Molten Carbonate Fuel Cell)

  • 임준혁;김태근
    • 한국환경과학회지
    • /
    • 제5권4호
    • /
    • pp.535-544
    • /
    • 1996
  • In the development of Molten Carbonate Fuel Cell, one of the serious problems is the dissolution of cathode material. Therefore, the development of the alternative cathode which is stable in molten carbonate is needed. In this research, the licoo, was chosen as alternative cathode material. $LiCoO_2$ powder was synthesized by high temperature calcination method and by citrate sol-gel method. And its structure and physical iharacteristics were analyzed by XRD, 1 R, TCA and porosimeter. The conductivity and solubility of $LiCoO_2$ electrode were also measured. Homogeneous $LiCoO_2$ Powder was obtained by citrate sol-Rel method at 445$^{\circ}C$, however, obtained above 75$0^{\circ}C$ by high temperature calcination method. Homogeneous particle size distribution and fine powder were obtained by the citrate sol-Rel method. $LiCoO_2$ electrode showed higher electric conductivity ($1.7 $\Omega$^{-1}cm^{-1}$) than NiO (0.1 $\Omega$^{-9} cm^{-1}) at $650^{\circ}C$. The solubilities of $LiCoO_2$ electrode in electrolyte were varies 0.6 to 1.0 ppm during 200 hours. So, the solubilities of $LiCoO_2$ were much lower than that of NiO.

  • PDF

용융탄산염연료전지 및 주변기기의 동적시뮬레이션 (Dynamic Simulation of Molten Carbonate Fuel Cell and Mechanical Balance of Plant)

  • 성태홍;김경천
    • 대한기계학회논문집B
    • /
    • 제38권2호
    • /
    • pp.121-128
    • /
    • 2014
  • 본 연구의 목적은 용융탄산염연료전지와 같은 고온연료전지에 동반하는 기계적 주변기기의 타당성을 검토할 수 있는 동적 시뮬레이션 모델을 개발하는 것이다. 연료전지를 운송수단과 같은 독립적인 동력기관에서 사용하기 위해서는 동반하는 기계적 주변기기를 최적화 및 소형화할 필요가 있다. 본 연구에서는 유입가스의 조성, 압력, 유량 및 스택의 온도에 따른 용융탄산염연료전지 내부의 화학반응의 동적 모델링을 구현하고 정상상태 시뮬레이션을 수행하여 실험결과와 비교 분석하였다. 또 연료전지의 전류밀도 제어에 따른 on/off 시뮬레이션을 수행하여 동적 시뮬레이션 모델의 타당성을 분석하였다.