• Title/Summary/Keyword: Molecule-molecule interaction

Search Result 271, Processing Time 0.027 seconds

Electrochemical Study on Energy Potential Levels with Pyrene Molecule

  • Kim, Hyungjoo;Li, Xiaochuan;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.25 no.3
    • /
    • pp.159-164
    • /
    • 2013
  • Pyrene based molecule has been synthesized through the reaction of pyrene-1-carboxaldehyde and 4- phenylthiosemicarbazide in this research. The pyrene based molecule showed specific optical properties such as absorption and emission changes after mixing with fluoride in DMSO. The phenomenon is induced by the interaction of the molecule and fluoride. This interaction may affect to electron distributions and potential energy levels. In this regard, synthesized pyrene based molecule has been investigated for its electron distributions and HOMO/LUMO energy levels depending on interaction with fluoride. The absorption measurement, cyclicvoltammograms and computational method were investigated to calculate and compare energy potential levels.

Interaction of acetone molecule on Si(001) surface: A theoretical study (Si(001) 표면과 acetone 분자의 상호작용에 대한 이론적 연구)

  • Baek, Seung-Bin;Kim, Dae-Hee;Kim, Yeong-Cheol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.3
    • /
    • pp.35-39
    • /
    • 2008
  • We study the interaction of acetone molecule $[(CH_3)_2CO]$ on Si(001) surface using density functional theory. An acetone molecule is adsorbed on a Si atom of the Si dimer of the Si(001) surface. The adsorption of the acetone molecule on the Si atom at lower height between the two Si atoms of the dimer is more favorable than that on the Si atoms at upper height. Then we calculate an energy variation of dissociation and four-membered ring structures of the acetone molecule adsorbed on the Si surface. Total energy difference between the two structures is about 0.05 eV, indicating that the two structures are almost equally stable. Energy barrier exists when a hydrogen atom is dissociated and adsorbed on the other Si atom of the dimer, while energy barrier does not exist when the adsorbed acetone molecule changes to four-membered ring structure, except for the rotation of the acetone molecule along z-direction. Therefore, four-membered ring structure is kinetically more favorable than the dissociation structure when the acetone molecule is adsorbed on the Si(001) surface.

  • PDF

Reversible Excited-State Proton Transfer: Effect of the Switching of Interaction Potential by Reaction

  • Lee, Jin-uk;Uhm, Je-sik;Lee, Woo-Jin;Lee, Sang-youb;Sung, Jae-young
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.197-202
    • /
    • 2006
  • In the reaction A + B $^\rightarrow_\leftarrow$ C, where A and B are ionic reactants having opposite charges, a B molecule approaching an A will experience a switching of the interaction potential when the A molecule is captured by one of the other B molecules in the medium. In the reversible case, the former B molecule still has a chance to react with the A, so that one needs to take into account the switched interaction between the reactant B and the product C as well as that between the reactants to treat the kinetics accurately. It is shown that this kind of interaction potential switching affects the relaxation kinetics in an intriguing way as observed in a recent experiment on an excited-state proton transfer reaction.

A Density Dependent Study on YHB RDF of Gaseous CO Molecule (밀도변화에 따른 CO기체 분자으I YHB 동경분포함수에 대한 연구)

  • Yoon, Jong Ho;Kim, Hae Won
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.456-460
    • /
    • 1999
  • The YHB radial distribution functions of a linear gas molecule CO were calculated by a computer within the Stockmayer molecular potential molel, which assumed thc CO molecule as a simple dipolar molecule. To examine the validity of the obtained YHB radial distribution of CO gas molecule, the density dependent pressures of CO at several temperatures were also calculated. The calculated pressures showed a good agreement with literially known experimental CO pressure data. The temperatures examined were 273, 298, and 373 K and the densities were up to $0.013/{\AA}^3$ (maximum pressure = 1000 atm). Since the calculated pressures showed a good agreement with the experimental values, the obtained YHB radial distribution functions of CO molecule seemed good enough to obtain and predict various equilibrium physical and chemical quantities of CO molecule sensitive to density such as pressure. It was also found that in CO gas system the dipole-dipole interaction is effective up to approximately 2.5 molecular diameter.

  • PDF

Use of Coulomb-Yukawa Like Correlated Interaction Potentials of Integer and Noninteger Indices and One-range Addition Theorems for Ψα-ETO in Evaluation of Potential of Electric Field Produced by Molecule

  • Guseinov, I.I.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2617-2620
    • /
    • 2009
  • Using Coulomb-Yukawa like correlated interaction potentials of integer and noninteger indices the series expansion formulae in terms of multicenter overlap integrals of three complete orthonormal sets of ${\psi}^{\alpha}$‒exponential type orbitals and linear combination coefficients of molecular orbitals are established for the potential of electrostatic field produced by the charges of molecule, where $\alpha$ = 1, 0, ‒1, ‒2,${\cdots}$. The formulae obtained can be useful for the study of interaction between atomic--molecular systems containing any number of closed and open shells when the ${\psi}^{\alpha}$‒exponential type basis functions and Coulomb-Yukawa like correlated interaction potentials are used in the Hartree-Fock-Roothaan and explicitly correlated approximations. The final results are valid for the arbitrary values of parameters of correlated interaction potentials and orbitals. As an example of application, the calculations have been performed for the potential energy of interaction between electron and molecule $H_2O$ using combined Hartree-Fock-Roothaan equations suggested by the author.

Regular Distribution of -OH Fragments on a Si (001)-c(4×2) Surface by Dissociation of Water Molecules (물 분자의 해리에 의한 Si (001)-c(4×2) 표면에서의 수산화기의 균일한 분포)

  • Lee, Soo-Kyung;Oh, Hyun-Chul;Kim, Dae-Hee;Jeong, Yong-Chan;Baek, Seung-Bin;Kim, Yeong-Cheol
    • Korean Journal of Materials Research
    • /
    • v.20 no.9
    • /
    • pp.457-462
    • /
    • 2010
  • Adsorption of a water molecule on a Si (001) surface and its dissociation were studied using density functional theory to study the distribution of -OH fragments on the Si surface. The Si (001) surface was composed of Si dimers, which buckle in a zigzag pattern below the order-disorder transition temperature to reduce the surface energy. When a water molecule approached the Si surface, the O atom of the water molecule favored the down-buckled Si atom, and the H atom of the water molecule favored the up-buckled Si atom. This is explained by the attractions between the negatively charged O of the water and the positively charged down-buckled Si atom and between the positively charged H of the water and the negatively charged up-buckled Si atom. Following the adsorption of the first water molecule on the surface, a second water molecule adsorbed on either the inter-dimer or intra-dimer site of the Si dimer. The dipole-dipole interaction of the two adsorbed water molecules led to the formation of the water dimer, and the dissociation of the water molecules occurred easily below the order-disorder transition temperature. Therefore, the 1/2 monolayer of -OH on the water-terminated Si (001) surface shows a regular distribution. The results shed light on the atomic layer deposition process of alternate gate dielectric materials, such as $HfO_2$.

Interaction of Water with Silver Iodide (AgI 결정면에 물의 흡착에 관한 이론적 고찰)

  • 백영현
    • Journal of the Korean institute of surface engineering
    • /
    • v.7 no.1
    • /
    • pp.5-12
    • /
    • 1974
  • The interaction energy of water molecule over the surfaces of basal planes of silver iodide has been calculated , assuming 1-4-6--12 type potentials between the gas molecule and lattice ions in the silver iodide lattice. The heat of adsorption ranges from 12.25 to 12.75 kcal /mole at low coverage which is around the level of the latent heat of sublimaton of water.

  • PDF

MO Calculation for the Dissociative Adsorption of Oxygen Molecule on Ni44(111) Model Surface

  • Lee Kwang Soon;Koo Hyun Joo;Ahn Woon Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.12
    • /
    • pp.1093-1097
    • /
    • 1994
  • The interaction of oxygen molecule with Ni44(111) model surface to which the molecule approaches is studied by calculating the relevant DOS and COOP with the tight-binding EHT method. It is found that the dissociative adsorption of oxygen takes place as a result of electron transfer from the Ni d${\pi}$ orbital to the antibonding 1${\pi}_g$ orbital of the oxygen molecule. This finding is noteworthy to contrast with the case of Ni(100) surface in which the electron transfer takes place from the Ni d${\delta}$ orbital of the nickel surface.

Vibration-Rotation Coupling in a Quasilinear Symmetric Triatomic Molecule

  • Lee, Jae-Shin
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.3
    • /
    • pp.228-236
    • /
    • 1994
  • The effect of the vibration mode coupling induced by the vibration-rotation interaction on total energy was investigated for the states with zero total angular momentum(J=0) in a quasilinear symmetric triatomic molecule of $AB_2$ type using a model potential function with a slight potential barrier to linearity. It is found that the coupling energy becomes larger for the levels of bend and asymmetric stretch modes and smaller for symmetric stretch mode as the excitation of the vibrational modes occurs. The results for the real molecule of $CH_2^+$, which is quasilinear, generally agree with the results for the model potential function in that common mode selective dependence of coupling energy is exhibited in both cases. The differences between the results for the model and real potential function in H-C-H system are analyzed and explained in terms of heavy mixing of the symmetric stretch and bend mode in excited vibrational states of the real molecule of $CH_2^+$. It is shown that the vibrational mode coupling in the potential energy function is primarily responsible for the broken nodal structure and chaotic behavior in highly excited levels of $CH_2^+$ for J= 0.

Expression of Adhesion Molecule in Inflammatory Gingival Tissue (염증성 치은조직에서 Cell Adhesion Molecule의 발현에 관한 연구)

  • Park, Kyung-Geun;Kim, Eun-Chul;You, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.3
    • /
    • pp.655-668
    • /
    • 1996
  • The change in vascular adhesion molecule expression and number of infiltrating leukocytes were investigated irnmunohistochemically in clinically healthy and inflammed gingiva. Monoclonal antibodies to ICAM-1, VCAM-1 and E-cadherin were used to identify positive vessels and leukocyte within gingival biopsies. 10 healthy gingiva and 30 inflammed gingiva was resected by clinical crown lengthening and modified Widman flap operation, respectively. Leukocyte entry into tissues at sites of inflammation is controlled by the interaction between adhesion molecule and endothelium. Because of rapid and severe destructive periodontal disease that is remarkable leukocyte adhesion deficiency, it is very important to unerdstand the mechanism of host defence against periodontal disease. The purpose of this investigation was the characterization of the presence and distribution of the adhesion molecule(ICAM-1, VCAM-1 and Evcadherin) in inflammatory gingival tissues compared to clinically healthy gingiva. The results were as followed; 1. ICAM-1 was distributed on basal layer, endothelium and mononuclear cells 10 healthy gingiva but inflammed gingiva was observed stronger stain than healthy gingiva. 2. Rare expression was observed in both group but few positive VCAM-1 cells were investigated in inflammatory gingival tissues 3. E-cadherin was expressed in only epithelium and reduced expression was observed in inflammatory gingival tissues. ICAM-1, VCAM-1 showed more expression in inflammatory tissues compared to healthy gingiva. Conversely, E-cadherin revealed a opposite result. These finding demonstrate a characteristic distribution and degree of adhesion molecule in healthy and inflammatory gingival tissues. But it is suggested that more detail study be progressive associated with leukocyte adhesion molecule to determine characterization of periodontal disease.

  • PDF