• Title/Summary/Keyword: Molecular targeted therapies

Search Result 67, Processing Time 0.023 seconds

Recent Advances in Adjuvant Therapy for Non-Small-Cell Lung Cancer

  • Mi-Hyun Kim;Soo Han Kim;Min Ki Lee;Jung Seop Eom
    • Tuberculosis and Respiratory Diseases
    • /
    • v.87 no.1
    • /
    • pp.31-39
    • /
    • 2024
  • After the successful development of targeted therapy and immunotherapy for the treatment of advanced-stage non-small cell lung cancer (NSCLC), these innovative treatment options are rapidly being applied in the adjuvant setting for early-stage NSCLC. Some adjuvants that have recently been approved include osimertinib for epidermal growth factor receptor-mutated tumors and atezolizumab and pembrolizumab for selected patients with resectable NSCLC. Numerous studies on various targeted therapies and immunotherapy with or without chemotherapy are currently ongoing in the adjuvant setting. However, several questions regarding optimal strategies for adjuvant treatment remain unanswered. The present review summarizes the available literature, focusing on recent advances and ongoing trials with targeted therapy and immunotherapy in the adjuvant treatment of early-stage NSCLC.

The role of dendritic cells in tumor microenvironments and their uses as therapeutic targets

  • Kim, Chae Won;Kim, Kyun-Do;Lee, Heung Kyu
    • BMB Reports
    • /
    • v.54 no.1
    • /
    • pp.31-43
    • /
    • 2021
  • Dendritic cells (DC), which consist of several different subsets, specialize in antigen presentation and are critical for mediating the innate and adaptive immune responses. DC subsets can be classified into conventional, plasmacytoid, and monocyte-derived DC in the tumor microenvironment, and each subset plays a different role. Because of the role of intratumoral DCs in initiating antitumor immune responses with tumor-derived antigen presentation to T cells, DCs have been targeted in the treatment of cancer. By regulating the functionality of DCs, several DC-based immunotherapies have been developed, including administration of tumor-derived antigens and DC vaccines. In addition, DCs participate in the mechanisms of classical cancer therapies, such as radiation therapy and chemotherapy. Thus, regulating DCs is also important in improving current cancer therapies. Here, we will discuss the role of each DC subset in antitumor immune responses, and the current status of DC-related cancer therapies.

Malignant Brain Tumours in Children : Present and Future Perspectives

  • Rutka, James T.
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.3
    • /
    • pp.402-406
    • /
    • 2018
  • In contrast to many of the malignant tumors that occur in the central nervous system in adults, the management, responses to therapy, and future perspectives of children with malignant lesions of the brain hold considerable promise. Within the past 5 years, remarkable progress has been made with our understanding of the basic biology of the molecular genetics of several pediatric malignant brain tumors including medulloblastoma, ependymoma, atypical teratoid rhabdoid tumour, and high grade glioma/diffuse intrinsic pontine glioma. The recent literature in pediatric neuro-oncology was reviewed, and a summary of the major findings are presented. Meaningful sub-classifications of these tumors have arisen, placing children into discrete categories of disease with requirements for targeted therapy. While the mainstay of therapy these past 30 years has been a combination of central nervous system irradiation and conventional chemotherapy, now with the advent of high resolution genetic mapping, targeted therapies have emerged, and less emphasis is being placed on craniospinal irradiation. In this article, the present and future perspective of pediatric brain malignancy are reviewed in detail. The progress that has been made offers significant hope for the future for patients with these tumours.

Review on Targeted Treatment of Patients with Advanced-Stage Renal Cell Carcinoma: A Medical Oncologist's Perspective

  • Tanriverdi, Ozgur
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.609-617
    • /
    • 2013
  • Renal cell carcinomas make up 3% of all cancers and one in four patients is metastatic at time of diagnosis. This cancer is one of the most resistant to cytotoxic chemotherapy. Studies have shown that the efficiency of interferon-alpha and/or interleukin-2 based immune therapies is limited in patients with metastatic renal cell carcinoma but latest advances in molecular biology and genetic science have resulted in better understanding of its biology. Tumor angiogenesis, tumor proliferation and metastasis develop by the activation of signal message pathways playing a role in the development of renal cell carcinomas. Better definition of these pathways has caused an increase in preclinic and clinical studies into target directed treatment of renal cell carcinoma. Many recent studies have shown that numerous anti-angiogenic agents have marked clinical activity. In this article, the focus is on general characteristics of molecular pathways playing a major role in renal cell carcinoma, reviewing clinical information onagents used in the target directed treatment of metastatic lesions.

Biomarker-directed Targeted Therapy in Colorectal Cancer

  • John M. Carethers
    • Journal of Digestive Cancer Research
    • /
    • v.3 no.1
    • /
    • pp.5-10
    • /
    • 2015
  • With advances in the understanding of the biology and genetics of colorectal cancer (CRC), diagnostic biomarkers that may predict the existence or future presence of cancer or a hereditary condition, and prognostic and treatment biomarkers that may direct the approach to therapy have been developed. Biomarkers can be ascertained and assayed from any tissue that may demonstrate the diagnostic or prognostic value, including from blood cells, epithelial cells via buccal swab, fresh or archival cancer tissue, as well as from cells shed into fecal material. For CRC, current examples of biomarkers for screening and surveillance include germline testing for suspected hereditary CRC syndromes, and stool DNA tests for screening average at-risk patients. Molecular biomarkers for CRC that may alter patient care and treatment include the presence or absence of microsatellite instability, the presence or absence of mutant KRAS, BRAF or PIK3CA, and the level of expression of 15-PGDH in the colorectal mucosa. Molecularly targeted therapies and some general therapeutic approaches rely on biomarker information. Additional novel biomarkers are on the horizon that will undoubtedly further the approach to precision or individualized medicine.

  • PDF

Identification of the Most Accessible Sites to Ribozymes on the Hepatitis C Virus Internal Ribosome Entry Site

  • Ryu, Kyung-Ju;Lee, Seong-Wook
    • BMB Reports
    • /
    • v.36 no.6
    • /
    • pp.538-544
    • /
    • 2003
  • The hepatitis C virus (HCV) is a major causative agent of chronic hepatitis and hepatocellular carcinoma. The development of alternative antiviral therapies is warranted because current treatments for the HCV infection affect only a limited number of patients and lead to significant toxicities. The HCV genome is exclusively present in the RNA form; therefore, ribozyme strategies to target certain HCV sequences have been proposed as anti-HCV treatments. In this study, we determined which regions of the internal ribosome entry site (IRES) of HCV are accessible to ribozymes by employing an RNA mapping strategy that is based on a trans-splicing ribozyme library. We then discovered that the loop regions of the domain IIIb of HCV IRES appeared to be particularly accessible. Moreover, to verify if the target sites that were predicted to be accessible are truly the most accessible, we assessed the ribozyme activities by comparing not only the trans-splicing activities in vitro but also the trans-cleavage activities in cells of several ribozymes that targeted different sites. The ribozyme that could target the most accessible site identified by mapping studies was then the most active with high fidelity in cells as well as in vitro. These results demonstrate that the RNA mapping strategy represents an effective method to determine the accessible regions of target RNAs and have important implications for the development of various antiviral therapies which are based on RNA such as ribozyme, antisense, or siRNA.

An Integrative Approach to Precision Cancer Medicine Using Patient-Derived Xenografts

  • Cho, Sung-Yup;Kang, Wonyoung;Han, Jee Yun;Min, Seoyeon;Kang, Jinjoo;Lee, Ahra;Kwon, Jee Young;Lee, Charles;Park, Hansoo
    • Molecules and Cells
    • /
    • v.39 no.2
    • /
    • pp.77-86
    • /
    • 2016
  • Cancer is a heterogeneous disease caused by diverse genomic alterations in oncogenes and tumor suppressor genes. Despite recent advances in high-throughput sequencing technologies and development of targeted therapies, novel cancer drug development is limited due to the high attrition rate from clinical studies. Patient-derived xenografts (PDX), which are established by the transfer of patient tumors into immunodeficient mice, serve as a platform for co-clinical trials by enabling the integration of clinical data, genomic profiles, and drug responsiveness data to determine precisely targeted therapies. PDX models retain many of the key characteristics of patients' tumors including histology, genomic signature, cellular heterogeneity, and drug responsiveness. These models can also be applied to the development of biomarkers for drug responsiveness and personalized drug selection. This review summarizes our current knowledge of this field, including methodologic aspects, applications in drug development, challenges and limitations, and utilization for precision cancer medicine.

Molecular Pathology of Lung Cancer: Current Status and Future Directions

  • Roh, Mee Sook
    • Tuberculosis and Respiratory Diseases
    • /
    • v.77 no.2
    • /
    • pp.49-54
    • /
    • 2014
  • The rapid development of targeted therapies has enormously changed the clinical management of lung cancer patients over the past decade; therefore, molecular testing, such as epidermal growth factor receptor (EGFR) gene mutations or anaplastic lymphoma kinase (ALK) gene rearrangements, is now routinely used to predict the therapeutic responses in lung cancer patients. Moreover, as technology and knowledge supporting molecular testing is rapidly evolving, the landscape of targetable genomic alterations in lung cancer is expanding as well. This article will summarize the current state of the most commonly altered and most clinically relevant genes in lung cancer along with a brief review of potential future developments in molecular testing of lung cancer.

Future Cancer Therapy with Molecularly Targeted Therapeutics: Challenges and Strategies

  • Kim, Mi-Sook
    • Biomolecules & Therapeutics
    • /
    • v.19 no.4
    • /
    • pp.371-389
    • /
    • 2011
  • A new strategy for cancer therapy has emerged during the past decade based on molecular targets that are less likely to be essential in all cells in the body, therefore confer a wider therapeutic window than traditional cytotoxic drugs which mechanism of action is to inhibit essential cellular functions. Exceptional heterogeneity and adaptability of cancer impose significant challenges in oncology drug discovery, and the concept of complex tumor biology has led the framework of developing many anticancer therapeutics. Protein kinases are the most pursued targets in oncology drug discovery. To date, 12 small molecule kinase inhibitors have been approved by US Food and Drug Administration, and many more are in clinical development. With demonstrated clinical efficacy of bortezomib, ubiquitin proteasome and ubiquitin-like protein conjugation systems are also emerging as new therapeutic targets in cancer therapy. In this review, strategies of targeted cancer therapies with inhibitors of kinases and proteasome systems are discussed. Combinational cancer therapy to overcome drug resistance and to achieve greater treatment benefit through the additive or synergistic effects of each individual agent is also discussed. Finally, the opportunities in the future cancer therapy with molecularly targeted anticancer therapeutics are addressed.

Novel Biomarkers for Prediction of Response to Preoperative Systemic Therapies in Gastric Cancer

  • Cavaliere, Alessandro;Merz, Valeria;Casalino, Simona;Zecchetto, Camilla;Simionato, Francesca;Salt, Hayley Louise;Contarelli, Serena;Santoro, Raffaela;Melisi, Davide
    • Journal of Gastric Cancer
    • /
    • v.19 no.4
    • /
    • pp.375-392
    • /
    • 2019
  • Preoperative chemo- and radiotherapeutic strategies followed by surgery are currently a standard approach for treating locally advanced gastric and esophagogastric junction cancer in Western countries. However, in a large number of cases, the tumor is extremely resistant to these treatments and the patients are exposed to unnecessary toxicity and delayed surgical therapy. The current clinical trials evaluating the combination of preoperative systemic therapies with modern targeted and immunotherapeutic agents represent a unique opportunity for identifying predictive biomarkers of response to select patients that would benefit the most from these treatments. However, it is of utmost importance that these potential biomarkers are corroborated by extensive preclinical and translational research. The aim of this review article is to present the most promising biomarkers of response to classic chemotherapeutic, anti-HER2, antiangiogenic, and immunotherapeutic agents that can be potentially useful for personalized preoperative systemic therapies in gastric cancer patients.