• 제목/요약/키워드: Molecular scale

검색결과 638건 처리시간 0.027초

Enhanced Inter-Symbol Interference Cancellation Scheme for Diffusion Based Molecular Communication using Maximum Likelihood Estimation

  • Raut, Prachi;Sarwade, Nisha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권10호
    • /
    • pp.5035-5048
    • /
    • 2016
  • Nano scale networks are futuristic networks deemed as enablers for the Internet of Nano Things, Body area nano networks, target tracking, anomaly/ abnormality detection at molecular level and neuronal therapy / drug delivery applications. Molecular communication is considered the most compatible communication technology for nano devices. However, connectivity in such networks is very low due to inter-symbol interference (ISI). Few research papers have addressed the issue of ISI mitigation in molecular communication. However, many of these methods are not adaptive to dynamic environmental conditions. This paper presents an enhancement over original Memory-1 ISI cancellation scheme using maximum likelihood estimation of a channel parameter (λ) to make it adaptable to variable channel conditions. Results of the Monte Carlo simulation show that, the connectivity (Pconn) improves by 28% for given simulation parameters and environmental conditions by using enhanced Memory-1 cancellation method. Moreover, this ISI mitigation method allows reduction in symbol time (Ts) up to 50 seconds i.e. an improvement of 75% is achieved.

Expansion of Dusty H II Regions and Its Impact on Disruption of Molecular Clouds

  • Kim, Jeong-Gyu;Kim, Woong-Tae;Ostriker, Eve
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.58.3-59
    • /
    • 2015
  • Dynamical expansion of H II regions plays a key role in dispersing surrounding gas and therefore in limiting the efficiency of star formation in molecular clouds. We use analytic methods and numerical simulations to explore expansions of spherical dusty H II regions, taking into account the effects of direct radiation pressure, gas pressure, and total gravity of the gas and stars. Simulations show that the structure of the ionized zone closely follows Draine (2011)'s static equilibrium model in which radiation pressure acting on gas and dust grains balances the gas pressure gradient. Strong radiation pressure creates a central cavity and a compressed shell at the ionized boundary. We analytically solve for the temporal evolution of a thin shell, finding a good agreement with the numerical experiments. We estimate the minimum star formation efficiency required for a cloud of given mass and size to be destroyed by an HII region expansion. We find that typical giant molecular clouds in the Milky Way can be destroyed by the gas-pressure driven expansion of an H II region, requiring an efficiency of less than a few percent. On the other hand, more dense cluster-forming clouds in starburst environments can be destroyed by the radiation pressure driven expansion, with an efficiency of more than ~30 percent that increases with the mean surface density, independent of the total (gas+stars) mass. The time scale of the expansion is always smaller than the dynamical time scale of the cloud, suggesting that H II regions are likely to be a dominant feedback process in protoclusters before supernova explosions occurs.

  • PDF

A Novel Approach to the Production of Hyaluronic Acid by Streptococcus zooepidemicus

  • Kim, Sae-Jin;Park, Sung-Yurb;Kim, Chan-Wha
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권12호
    • /
    • pp.1849-1855
    • /
    • 2006
  • It has been shown that the initial conditions of bacterial cultivation are extremely important for the successful production of hyaluronic acid (HA) by fermentation. We investigated several parameters that affect cell growth rate and the productivity and molecular weight of hyaluronic acid--i.e., agitation speed, aeration rate, culture temperature, pH, and pressure--to determine how to optimize the production of HA by Streptococcus zooepidemicus on an industrial scale. Using a 30-1 jar fermentor under laboratory conditions, we achieved maximum HA productivity and biomass when the agitation speed and aeration rate were increased simultaneously. By shifting the temperature downward from 35$^{\circ}C$ to 32$^{\circ}C$ at key levels of cell growth during the fermentation process, we were able to obtain HA with a molecular weight of $2.8{\times}10^6$ at a productivity of 5.3 g/l. Moreover, we reproduced these optimized conditions successfully in three 30-1 jar fermentors. By reproducing these conditions in a 3-$m^3$ fermentor, we were able to produce HA with a molecular weight of $2.9{\times}10^6$ at a productivity of 5.4 g/l under large-scale conditions.

Resist 표면 거칠기 예측을 위한 전자빔 리소그라피 시뮬레이션에 관한 연구 (A Study on Electron-beam Lithography Simulation for Resist Surface Roughness Prediction)

  • 김학;한창호;이기용;이우진;전국진
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(2)
    • /
    • pp.45-48
    • /
    • 2002
  • This paper discusses the surface roughness of negative chemically amplified resists, SAL601 exposed by I-beam direct writing. system. Surface roughness, as measured by atomic force microscopy, have been simulated and compared to experimental results. Molecular-scale simulator predicts the roughness dependence on material properties and process conditions. A chemical amplification is made to occur in the resists during PEB process. Monte-Carlo and exposure simulations are used as the same program as before. However, molecular-scale PEB simulation has been remodeled using a two-dimensional molecular lattice representation of the polymer matrix. Changes in surface roughness are shown to correlate with the dose of exposure and tile baking time of PEB process. The result of simulation has a similar tendency with that of experiment.

  • PDF

Molecular-scale Structure of Pentacene at Functionalized Electronic Interfaces

  • Seo, Soon-Joo;Peng, Guowen;Mavrikakis, Manos;Ruther, Rose;Hamers, Robert J.;Evans, Paul G.;Kang, Hee-Jae
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.299-299
    • /
    • 2011
  • A dipolar interlayer can cause dramatic changes in the device characteristics of organic field-effect transistors (OFETs) or photovoltaics. A shift in the threshold voltage, for example, has been observed in an OFET where the organic semiconductor active layer is deposited on SiO2 modified with a dipolar monolayer. Dipolar molecules can similarly be used to change the current-voltage characteristics of organic-inorganic heterojunctions. We have conducted a series of experiments in which different molecular linkages are placed between a pentacene thin film and a silicon substrate. Interface modifications with different linkages allow us to predict and examine the nature of tunneling through pentacene on modified Si surfaces with different dipole moment. The molecular-scale structure and the tunneling properties of pentacene thin films on modified Si (001) with nitrobenzene and styrene were examined using scanning tunneling spectroscopy. Electronic interfaces using organic surface dipoles can be used to control the band lineups of a semiconductor at organic/inorganic interfaces. Our results can provide insights into the charge transport characteristics of organic thin films at electronic interfaces.

  • PDF

Patterning self-assembled pentacene nanolayer by EUV-induced 3-dimensional polymerization

  • 황한나;한진희;임준;신현준;김영독;황찬국
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.65-65
    • /
    • 2010
  • Extreme ultraviolet lithography (EUVL) is expected to be applied for making patterns below 32 nm in device industry. An ultrathin EUV photoresist (PR) of a few nm in thickness is required to reduce minimum feature size further. Here, we show that pentacene molecular layers can be employed as a new EUV resist for the first time. Dots and lines in nm scale are successfully realized using the new molecular resist. We clearly provide the mechanism for forming the nanopatterns with scanning photoemission microscope (SPEM), EUV interference lithography (EUV-IL), atomic force microscope (AFM), photoemission spectroscopy (PES), etc. The molecular PR has several advantages over traditional polymer EUV PRs; for example, high thermal/chemical stability, negligible outgassing, ability to control the height and width on the nanometer scale, leaving fewer residuals, no need for a chemical development process and thus reduction of chemical waste to make the nanopatterns. Besides, it could be applied to any substrate to which pentacene bonds chemically, such as $SiO_2$, SiN, and SiON, which is of importance in the device industry.

  • PDF

나노스케일 워터젯 가공에 대한 분자시뮬레이션 연구 (Molecular Simulation of Nano-Scale Waterjet Machining)

  • 이상훈;김현준;김태욱
    • Tribology and Lubricants
    • /
    • 제39권5호
    • /
    • pp.216-219
    • /
    • 2023
  • This study employs molecular dynamics simulations to investigate the material behavior of workpieces in waterjet machining processes. To gain fundamental insights into waterjet machining, simulations were conducted using pure water, excluding abrasive particles. The simulation model comprised thousands of water molecules interacting with a single crystal metal workpiece. Water molecule clusters were imparted with various velocities to initiate collisions with the metal workpiece. The material behavior of the metal surface was analyzed with respect to the applied velocity conditions, considering the intricate interplay between water molecules and the workpiece at the atomic scale. The results demonstrated that the machining of the metal workpiece occurred only when water molecules were endowed with velocities above a certain threshold. In cases where energy was insufficient, the metal workpiece exhibited a slight increase in surface roughness due to mild plastic deformation, without undergoing substantial material removal. When machining occurred, the ejection of material revealed a 3-fold symmetric pattern, confirming that material removal in waterjet machining of the metal workpiece is primarily driven by plastic deformation-induced material ejection. This research provides crucial insights into the mechanisms underlying waterjet machining and enhances our understanding of material behavior during the process. The findings can be valuable in optimizing waterjet machining techniques.

Influence of vacancy defects on vibration analysis of graphene sheets applying isogeometric method: Molecular and continuum approaches

  • Tahouneh, Vahid;Naei, Mohammad Hasan;Mashhadi, Mahmoud Mosavi
    • Steel and Composite Structures
    • /
    • 제34권2호
    • /
    • pp.261-277
    • /
    • 2020
  • The main objective of this research paper is to consider vibration analysis of vacancy defected graphene sheet as a nonisotropic structure via molecular dynamic and continuum approaches. The influence of structural defects on the vibration of graphene sheets is considered by applying the mechanical properties of defected graphene sheets. Molecular dynamic simulations have been performed to estimate the mechanical properties of graphene as a nonisotropic structure with single- and double- vacancy defects using open source well-known software i.e., large-scale atomic/molecular massively parallel simulator (LAMMPS). The interactions between the carbon atoms are modelled using Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential. An isogeometric analysis (IGA) based upon non-uniform rational B-spline (NURBS) is employed for approximation of single-layered graphene sheets deflection field and the governing equations are derived using nonlocal elasticity theory. The dependence of small-scale effects, chirality and different defect types on vibrational characteristic of graphene sheets is investigated in this comprehensive research work. In addition, numerical results are validated and compared with those achieved using other analysis, where an excellent agreement is found. The interesting results indicate that increasing the number of missing atoms can lead to decrease the natural frequencies of graphene sheets. It is seen that the degree of the detrimental effects differ with defect type. The Young's and shear modulus of the graphene with SV defects are much smaller than graphene with DV defects. It is also observed that Single Vacancy (SV) clusters cause more reduction in the natural frequencies of SLGS than Double Vacancy (DV) clusters. The effectiveness and the accuracy of the present IGA approach have been demonstrated and it is shown that the IGA is efficient, robust and accurate in terms of nanoplate problems.

나노 및 바이오 시스템 해석을 위한 탄성네트워크모델 (Elastic Network Model for Nano and Bio System Analysis)

  • 김문기
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.668-669
    • /
    • 2008
  • In this paper, we introduce various coarse-grained elastic network modeling (ENM) techniques as a novel computational method for simulating atomic scale dynamics in macromolecules including DNA, RNA, protein, and polymer. In ENM, a system is modeled as a spring network among representative atoms in which each linear elastic spring is well designed to replace both bonded and nonbonded interactions among atoms in the sense of quantum mechanics. Based on this simplified system, a harmonic Hookean potential is defined and used for not only calculating intrinsic vibration modes of a given system, but also predicting its anharmonic conformational change, both of which are strongly related with its functional features. Various nano and bio applications of ENM such as fracture mechanics of nanocomposite and protein dynamics show that ENM is one of promising tools for simulating atomic scale dynamics in a more effective and efficient way comparing to the traditional molecular dynamics simulation.

  • PDF

METALLIC INTERFACES IN HARSH CHEMO-MECHANICAL ENVIRONMENTS

  • Yildiz, Bilge;Nikiforova, Anna;Yip, Sidney
    • Nuclear Engineering and Technology
    • /
    • 제41권1호
    • /
    • pp.21-38
    • /
    • 2009
  • The use of multi scale modeling concepts and simulation techniques to study the destabilization of an ultrathin layer of oxide interface between a metal substrate and the surrounding environment is considered. Of particular interest are chemo-mechanical behavior of this interface in the context of a molecular-level description of stress corrosion cracking. Motivated by our previous molecular dynamics simulations of unit processes in materials strength and toughness, we examine the challenges of dealing with chemical reactivity on an equal footing with mechanical deformation, (a) understanding electron transfer processes using first-principles methods, (b) modeling cation transport and associated charged defect migration kinetics, and (c) simulation of pit nucleation and intergranular deformation to initiate the breakdown of the oxide interlayer. These problems illustrate a level of multi-scale complexity that would be practically impossible to attack by other means; they also point to a perspective framework that could guide future research in the broad computational science community.