• Title/Summary/Keyword: Molecular properties

Search Result 3,780, Processing Time 0.247 seconds

Partial purification and some properties of Guanosine Triphosphate Cyclohydrolase from Pseudomonas putida : GTP cyclohydrolase from pseudomonas (Pseudomonas putida에서 부분정제한 Guanosine Triphosphate Cyclohydrolase 의 특성에 관한 연구)

  • 김완기;임정빈
    • Korean Journal of Microbiology
    • /
    • v.20 no.4
    • /
    • pp.201-209
    • /
    • 1982
  • An enzyme, named GTP cyclohydorlase, that catalizes the hydrolytic removal of carbon No.S of GTP has been partially purified from extracts of Pseudomonas putida (IAM 1506). The enzyme exists in two molecuar weight forms : a high molecular weight form (150,000) and a low molecular weight from (40,000). The high molecular weight form has been purified 25-fold. Some of the properties of the enzyme are as follows : It functions optimally at pH8.0, and at $52^{\circ}C$. The Km value for GTP is $20{\mu}M$. Divalent cations $(Cd^{2+}\;and\;Hg^{2+})$ 2+/) at a concentration of 5mM inhibit completely the enzyme activity. No metal ion including $Mg^{2+}$ is needed for the catalysis. The enzyme is heat labile ; its half at $57^{\circ}C$ is 1.5 min. Of a number of nucleotides tested, only GDP was used to any extent as substrbte in place of GTP. One of the products of the enzyme is determined to be a dihydro-neopterin compound.

  • PDF

Hydrogen Separation from Binary and Quaternary Gas Mixtures Using Organic Templating Silica Membrane (유기템플레이팅 실리카막을 이용한 이성분 및 사성분 수소 분리)

  • Moon, Jong-Ho;Bae, Ji-Han;Chung, Jong-Tae;Lee, Jae-Wook;Lee, Chang-Ha
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.9-12
    • /
    • 2007
  • The transport mechanisms of the MTES (methyltriethoxysilane) templating silica/a-alumina composite membrane were evaluated by using four binary and one quaternary hydrogen mixtures through permeation experiments at unsteady- and steady-states. Since the permeation flux in the MTES membrane, through the experimental and theoretical studies, was affected by molecular sieving effects as well as surface diffusion properties, the kinetic and equilibrium separation should be considered simultaneously according to molecular properties. In order to depict the transient multi-component permeation on the templating silica membrane, the GMS (generalized Maxwell-Stefan) and DGM (dust gas model) were adapted to unsteady-state material balance.

  • PDF

Influence of Selenization Pressure on Properties of CIGS Absorber Layer Prepared by RF Sputtering

  • Jung, Sung Hee;Choi, Ji Hyun;Chung, Chee Won
    • Current Photovoltaic Research
    • /
    • v.4 no.3
    • /
    • pp.87-92
    • /
    • 2016
  • The effects of selenization pressure on the structural, optical and electrical properties of the CIGS thin films prepared by RF magnetron sputtering using a single quaternary target were investigated. At selenization pressures lower than atmospheric pressure, CIGS thin films formed non-stoichiometric compounds due to deficiencies of Se vapor. In contrast, when selenization process was conducted at above atmospheric pressure, the residence time of Se vapor inside the tube increased so that the Se element could be incorporated within vacant sites of the CIGS structure, resulting in the formation of stoichiometric CIGS thin films. High quality CIGS thin films could be obtained when the selenization process was performed at pressures greater than atmospheric and $550^{\circ}C$.

Molecular Aspects of Organic Ion Transporters in the Kidney

  • Cha, Seok-Ho;Endou, Hitoshi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.2
    • /
    • pp.107-122
    • /
    • 2001
  • A function of the kidney is elimination of a variety of xenobiotics ingested and wasted endogenous compounds from the body. Organic anion and cation transport systems play important roles to protect the body from harmful substances. The renal proximal tubule is the primary site of carrier-mediated transport from blood into urine. During the last decade, molecular cloning has identified several families of multispecific organic anion and cation transporters, such as organic anion transporter (OAT), organic cation transporter (OCT), and organic anion-transporting polypeptide (oatp). Additional findings also suggested ATP-dependent organic ion transporters such as MDR1/P-glycoprotein and the multidrug resistance-associated protein (MRP) as efflux pump. The substrate specificity of these transporters is multispecific. These transporters also play an important role as drug transporters. Studies on their functional properties and localization provide information in renal handling of drugs. This review summarizes the latest knowledge on molecular properties and pharmacological significance of renal organic ion transporters.

  • PDF

Monte Carlo Simulation of the Molecular Properties of Poly(vinyl chloride) and Poly(vinyl alcohol) Melts

  • Moon, Sung-Doo;Kang, Young-Soo;Lee, Dong-J.
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.491-497
    • /
    • 2007
  • NPT Monte Carlo simulations were performed to calculate the molecular properties of syndiotactic poly(vinyl chloride) (PVC) and syndiotactic poly(vinyl alcohol) (PVA) melts using the configurational bias Monte Carlo move, concerted rotation, reptation, and volume fluctuation. The density, mean square backbone end-to-end distance, mean square radius of gyration, fractional free-volume distribution, distribution of torsional angles, small molecule solubility constant, and radial distribution function of PVC at 0.1 MPa and above the glass transition temperature were calculated/measured, and those of PVA were calculated. The calculated results were compared with the corresponding experimental data and discussed. The calculated densities of PVC and PVA were smaller than the experimental values, probably due to the very low molecular weight of the model polymer used in the simulation. The fractional free-volume distribution and radial distribution function for PVC and PVA were nearly independent of temperature.

A Study on the Velocity Distribution of Gas Molecules by the Molecular Dynamics Method (분자동역학법에 의한 기체분자의 속도분포에 관한 연구)

  • 최순호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.441-450
    • /
    • 2004
  • The velocity distribution of gas molecules from the experimental results was confirmed as the same with the Maxwell-Boltzmann's theoretical results within the experimental error. This study is on the realization of the Maxwell-Boltzmann's velocity distribution of gas molecules by the molecular dynamics(MD) method. The Maxwell-Boltzmann's velocity distribution of gas molecules is extremely important to confirm the equilibrium state because the properties of a thermodynamic system shall be obtained from the system's equilibrium configuration in the MD method. This study is the first trial in the successive researches to calculate the properties of a thermodynamic system by the computer simulations. We confirmed that the maxwell-boltzmann's velocity distribution is developed in some transient time after starting a simulation and dependent on the size of a system. Also it is found that the velocity distribution has no relation with an initial configuration of gas molecules.

Nanocomposites Based on Polytetrafluoroethylene and Ultrahigh Molecular Weight Polyethylene: A Brief Review

  • Kirillina, Iu.V.;Nikiforov, L.A.;Okhlopkova, A.A.;Sleptsova, S.A.;Yoon, Cheonho;Cho, Jin-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3411-3420
    • /
    • 2014
  • Deficiencies in wear and frost resistance as well as mechanical strength constitute the main causes of equipment failure under the harsh climatic conditions of the Earth's polar regions. To improve the properties of the materials used in this equipment, nanoparticle composites have been prepared from clays such as kaolinite, hectorite, and montmorillonite in combination with polytetrafluoroethylene (PTFE) or ultrahigh molecular weight polyethylene (UHMWPE). A number of techniques have been proposed to disperse silicate particles in PTFE or UHMWPE polymer matrices, and several successful processes have even been widely applied. Polymer nanocomposites that exhibit enhanced mechanical and thermal properties are promising materials for replacing metals and glass in the equipment intended for Arctic use. In this article, we will review PTFE- and UHMWPE-based layered silicate nanocomposites.

Molecular Dynamics Simulation Study of Transport Properties of Diatomic Gases

  • Lee, Song Hi;Kim, Jahun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3527-3531
    • /
    • 2014
  • In this paper, we report thermodynamic and transport properties (diffusion coefficient, viscosity, and thermal conductivity) of diatomic gases ($H_2$, $N_2$, $O_2$, and $Cl_2$) at 273.15 K and 1.00 atm by performing molecular dynamics simulations using Lennard-Jones intermolecular potential and modified Green-Kubo formulas. The results of self-diffusion coefficients of diatomic gases obtained from velocity auto-correlation functions by Green-Kubo relation are in good agreement with those obtained from mean square displacements by Einstein relation. While the results for viscosities of diatomic gases obtained from stress auto-correlation functions underestimate the experimental results, those for thermal conductivities obtained from heat flux auto-correlation functions overestimate the experimental data except $H_2$.

The Molecular Structures of Poly(3-hexylthiophene) Films Determine the Contact Properties at the Electrode/Semiconductor Interface

  • Park, Yeong Don
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2277-2280
    • /
    • 2014
  • The contact properties between gold and poly(3-hexylthiophene) (P3HT) films having either of two distinct molecular orientations and orderings were investigated. Thermal treatment increased the molecular ordering of P3HT and remarkably reduced the contact resistance at the electrode/semiconductor interface, which enhanced the electrical performance. This phenomenon was understood in terms of a small degree of metal penetration into the P3HT film as a result of the thermal treatment, which formed a sharp interface at the contact interface between the gold electrode and the organic semiconductor.

Methodology for Describing Different Phase States of Molecular Nitrogen

  • Cho, Haeng Muk;Kudryavtsev, I.N.;Kramskoy, A.V.
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.215-222
    • /
    • 2014
  • A theory-based methodology for describing the thermodynamic properties of molecular nitrogen is presented. The results obtained indicate a successful application of a fully consistent statistical method for the description of a molecular system in different phase states. The method employs a density of states equation for solid nitrogen and a perturbation potential for gaseous and liquid nitrogen. The main characteristics of the calculation method include the need for a minimal number of initial data and the absence of fitting parameters. The adequacy of the physical model that is the basis for the method allows a description of existing experimental data and the peculiarities of the thermodynamic properties.