Browse > Article
http://dx.doi.org/10.21218/CPR.2016.4.3.087

Influence of Selenization Pressure on Properties of CIGS Absorber Layer Prepared by RF Sputtering  

Jung, Sung Hee (Department of Chemistry and Chemical Engineering, Center for Design and Applications of Molecular Catalysts, Inha University)
Choi, Ji Hyun (Department of Chemistry and Chemical Engineering, Center for Design and Applications of Molecular Catalysts, Inha University)
Chung, Chee Won (Department of Chemistry and Chemical Engineering, Center for Design and Applications of Molecular Catalysts, Inha University)
Publication Information
Current Photovoltaic Research / v.4, no.3, 2016 , pp. 87-92 More about this Journal
Abstract
The effects of selenization pressure on the structural, optical and electrical properties of the CIGS thin films prepared by RF magnetron sputtering using a single quaternary target were investigated. At selenization pressures lower than atmospheric pressure, CIGS thin films formed non-stoichiometric compounds due to deficiencies of Se vapor. In contrast, when selenization process was conducted at above atmospheric pressure, the residence time of Se vapor inside the tube increased so that the Se element could be incorporated within vacant sites of the CIGS structure, resulting in the formation of stoichiometric CIGS thin films. High quality CIGS thin films could be obtained when the selenization process was performed at pressures greater than atmospheric and $550^{\circ}C$.
Keywords
CIGS thin film; RF sputtering; Absorber layer; Selenization; Solar cells;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. S. Chen, J. C. Yang, Y. C. Chan, L. C. Yang and W. Huang, "Another route to fabricate single-phase chalcogenides by post-selenization of Cu-In-Ga precursors sputter deposited from a single ternary target", Sol. Energy Mater. Sol. Cells 93, 1351 (2009).   DOI
2 B. J. Brown, B. Haba and C. W. Hates, "Solution Chemistry in the Formation of Single-Phase $CuInSe_2$ by Spray Pyrolysis", J. Electrochem. Soc. :Solid-State Sci. Technol. 135, 1599 (1988).
3 M. A. Contreras, B. Egaas, K. Ramanthan, J. Hiltmer, A. Swartzlander, F. Hasson, R. Noufi, Prog. "Progress toward 20% efficiency in Cu(In,Ga)$Se_2$ polycrystalline thin-film solar cells", Photovol. Res. Appl. 7, 311 (1999).   DOI
4 R. N. Bhattacharya, H. Wiesner, T. A. Berens, R. J. Matson, J. Keane and K. Ramanthan, "12.3% Efficient $CuIn_1$- $_xGa_xSe_2$-Based Device from Electrodeposited Precursor", J. Elecrochem. Soc. 144, 1376 (1997).   DOI
5 Z. Yu, C. Yan, Y. Yan, Y. Zhang, T. Huang, W. Huang, S. Li, L. Liu, Y. Zhang, Y. Zhao, "Effect of annealing temperature on properties of RF sputtered Cu(In,Ga)$Se_2$ thin films", Appl. Surf. Sci. 258, 8527 (2012).   DOI
6 H. J. Feng, L. Cheng, J. Tao, X. Hua-mu and Z. Kui, "Investigation of Cu(In,Ga)$Se_2$ polycrystalline growth: Ga diffusion and surface morphology evolution", Mater. Res. Bull. 49, 187 (2014).   DOI
7 J. Wang, J. Zhu and Y. X. He, "The influence of different locations of sputter guns on the morphological and structural properties of Cu-In-Ga precursors and Cu(In,Ga)$Se_2$ thin films", Appl. Surf. Sci. 288, 109 (2014).   DOI
8 D. H. Kuo, Y. C. Tu and M. Monsefi, "Effects of selenization parameters on growth characteristics of the Cu(In,Ga)$Se_2$ films deposited by sputtering with a Cu-In-Ga, Cu-In-$Ga_2Se_3$, or Cu-Ga-$In_2Se_3$ target and a subsequent selenization procedure at $550-700^{\circ}C$", Appl. Surf. Sci. 268, 22 (2013).   DOI
9 A. J. Zhou, D. Mei, X. G. Kong, X. H. Xu, L. D. Feng, X. Y. Dai, T. Gao and J. Z. Li, "One-step synthesis of Cu(In,Ga)$Se_2$ absorber layers by magnetron sputtering from a single quaternary targetThin", Solid Films 520, 6068 (2012).   DOI
10 S. H. Jung, R. Fan, W. I. Lee and C. W. Chung, "Structural and electrical properties of radio frequency magnetron sputtered Cu(InxGa1 - x)$Se_2$ thin films with additional post-heat treatment", Thin Solid Films 547, 86 (2013).   DOI
11 H. K. Song, J. K. Jeong, H. J. Kim, S. K. Kim and Kyung Hoon Yoon, "Fabrication of $CuIn_1$-xGax$Se_2$ thin film solar cells by sputtering and selenization process", Thin Solid Films 435, 186 (2003).   DOI
12 V. Alberts, S. Zweigart and H. W. Schock, "Preparation of device quality $CuInSe_2$ by selenization of Se-containing precursors in $H_2Se$", Semicond. Sci. Technol. 12, 217 (1997).   DOI
13 P. K. Mishra, V. Dave, R. Chandra, J. N. Prasad and A. K. Choudhary, "Effect of processing parameter on structural, optical and electrical properties of photovoltaic chalcogenide nanostructured RF magnetron sputtered thin absorbing films", Mater. Sci. Semicond. Process. 25, 307 (2014).   DOI
14 J. H. Kim, H. S. Lee and N. M. Park, "Post-annealing effect on the reactively sputter-grown CIGS thin films and its influence to solar cell performance", Curr. Appl. Phys. 14, s63 (2014).   DOI
15 Y. C. Lin, Z. Q. Lin, C. H. Shen, L. Q. Wang, C. T. Ha and C. Peng, J. "Cu(In, Ga)$Se_2$ films prepared by sputtering with a chalcopyrite Cu(In, Ga)$Se_2$ quaternary alloy and In targets", Mater. Sci. : Mater. Electron. 23, 493 (2012).   DOI
16 R. Caballero, C. Maffiotte and C. Guillen, "Preparation and characterization of $CuIn_1$-xGax$Se_2$ thin films obtained by sequential evaporations and different selenization processes", Thin Solid Films 474, 70 (2005).   DOI
17 J. H. Shi, Z. Q. Li, D. W. Zhang, Q. Q. Liu, Z. Sun and S. M. Huang, "Fabrication of Cu(In, Ga)$Se_2$ thin films by sputtering from a single quaternary chalcogenide target", Prog. Photovoltaics: Res. Appl. 19, 160 (2011).   DOI