• Title/Summary/Keyword: Molecular pathway

Search Result 1,772, Processing Time 0.033 seconds

Arabidopsis Histidine-containing Phosphotransfer Factor 4 (AHP4) Negatively Regulates Secondary Wall Thickening of the Anther Endothecium during Flowering

  • Jung, Kwang Wook;Oh, Seung-Ick;Kim, Yun Young;Yoo, Kyoung Shin;Cui, Mei Hua;Shin, Jeong Sheop
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.294-300
    • /
    • 2008
  • Cytokinins are essential hormones in plant development. $\underline{A}$rabidopsis $\underline{h}$istidine-containing $\underline{p}$hosphotransfer proteins (AHPs) are mediators in a multistep phosphorelay pathway for cytokinin signaling. The exact role of AHP4 has not been elucidated. In this study, we demonstrated young flower-specific expression of AHP4, and compared AHP4-overexpressing (Ox) trangenic Arabidopsis lines and an ahp4 knock-out line. AHP4-Ox plants had reduced fertility due to a lack of secondary cell wall thickening in the anther endothecium and inhibition of IRREGURAR XYLEMs (IRXs) expression in young flowers. Conversely, ahp4 anthers had more lignified anther walls than the wild type, and increased IRXs expression. Our study indicates that AHP4 negatively regulates thickening of the secondary cell wall of the anther endothecium, and provides new insight into the role of cytokinins in formation of secondary cell walls via the action of AHP4.

Post-Translational Regulation of miRNA Pathway Components, AGO1 and HYL1, in Plants

  • Cho, Seok Keun;Ryu, Moon Young;Shah, Pratik;Poulsen, Christian Peter;Yang, Seong Wook
    • Molecules and Cells
    • /
    • v.39 no.8
    • /
    • pp.581-586
    • /
    • 2016
  • Post-translational modifications (PTMs) of proteins are essential to increase the functional diversity of the proteome. By adding chemical groups to proteins, or degrading entire proteins by phosphorylation, glycosylation, ubiquitination, neddylation, acetylation, lipidation, and proteolysis, the complexity of the proteome increases, and this then influences most biological processes. Although small RNAs are crucial regulatory elements for gene expression in most eukaryotes, PTMs of small RNA microprocessor and RNA silencing components have not been extensively investigated in plants. To date, several studies have shown that the proteolytic regulation of AGOs is important for host-pathogen interactions. DRB4 is regulated by the ubiquitin-proteasome system, and the degradation of HYL1 is modulated by a de-etiolation repressor, COP1, and an unknown cytoplasmic protease. Here, we discuss current findings on the PTMs of microprocessor and RNA silencing components in plants.

Alterations in Striatal Circuits Underlying Addiction-Like Behaviors

  • Kim, Hyun Jin;Lee, Joo Han;Yun, Kyunghwa;Kim, Joung-Hun
    • Molecules and Cells
    • /
    • v.40 no.6
    • /
    • pp.379-385
    • /
    • 2017
  • Drug addiction is a severe psychiatric disorder characterized by the compulsive pursuit of drugs of abuse despite potential adverse consequences. Although several decades of studies have revealed that psychostimulant use can result in extensive alterations of neural circuits and physiology, no effective therapeutic strategies or medicines for drug addiction currently exist. Changes in neuronal connectivity and regulation occurring after repeated drug exposure contribute to addiction-like behaviors in animal models. Among the involved brain areas, including those of the reward system, the striatum is the major area of convergence for glutamate, GABA, and dopamine transmission, and this brain region potentially determines stereotyped behaviors. Although the physiological consequences of striatal neurons after drug exposure have been relatively well documented, it remains to be clarified how changes in striatal connectivity underlie and modulate the expression of addiction-like behaviors. Understanding how striatal circuits contribute to addiction-like behaviors may lead to the development of strategies that successfully attenuate drug-induced behavioral changes. In this review, we summarize the results of recent studies that have examined striatal circuitry and pathway-specific alterations leading to addiction-like behaviors to provide an updated framework for future investigations.

Transcription Regulation Network Analysis of MCF7 Breast Cancer Cells Exposed to Estradiol

  • Wu, Jun-Zhao;Lu, Peng;Liu, Rong;Yang, Tie-Jian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.3681-3685
    • /
    • 2012
  • Background: In breast cancer, estrogen receptors have been demonstrated to interact with transcription factors to regulate target gene expression. However, high-throughput identification of the transcription regulation relationship between transcription factors and their target genes in response to estradiol is still in its infancy. Purpose: Thus, the objective of our study was to interpret the transcription regulation network of MCF7 breast cancer cells exposed to estradiol. Methods: In this work, GSE11352 microarray data were used to identify differentially expressed genes (DEGs). Results: Our results showed that the MYB (v-myb myeloblastosis viral oncogene homolog [avian]), PGR (progesterone receptor), and MYC (v-myc myelocytomatosis viral oncogene homolog [avian]) were hub nodes in our transcriptome network, which may interact with ER and, in turn, regulate target gene expression. MYB can up-regulate MCM3 (minichromosome maintenance 3) and MCM7 expression; PGR can suppress BCL2 (B-cell lymphoma 2) expression; MYC can inhibit TGFB2 (transforming growth factor, beta 2) expression. These genes are associated with breast cancer progression via cell cycling and the $TGF{\beta}$ signaling pathway. Conclusion: Analysis of transcriptional regulation may provide a better understanding of molecular mechanisms and clues to potential therapeutic targets in the treatment of breast cancer.

Comprehension of Capsaicin for a Experimental Part of Physical Therapy (물리치료의 실험적 측면에 대한 Capsaicin의 이해)

  • Kim, Dong-Hyun;Kim, Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.13 no.1
    • /
    • pp.219-227
    • /
    • 2001
  • Capsaicin. a vanillyl amide(8-methy1-N-vanilly1-6-nonenamide) with a molecular weight of 305.42, was substance, interrupting the pain conducting pathway Until recently the neurotoxic effects of Capsaicin to adult animals were thought to be limited to the peripheral nervous system. But several reports suggest the possibility of central nervous system changes after Capsaicin administration to the adult rat. Capsaicin desensitization is defined as long lasting, reversible suppression of sensory neuron activity. How fast and for how long the desensitization develops is related to the dose and time of exposure to Capsaicin, and the interval between consecutive dosing. In the long term Capsaicin treatment can lead to morphological degeneration and changes in some small sensory neurons, predominantly unmyelinated C fiber afferent nerve fibers. Clinical interest has recently been roused by evidence that Capsaicin's desensitizing action may be of therapeutic value and that an endogenous Capsaicin-1 ike substance may exist. This study summarizes the fundamental knowledge(mechanism, receptors, et al of Capsaicin) of Capsaicin for physical therapists.

  • PDF

Dysregulation of NRF2 in Cancer: from Molecular Mechanisms to Therapeutic Opportunities

  • Jung, Byung-Jin;Yoo, Hwan-Sic;Shin, Sooyoung;Park, Young-Joon;Jeon, Sang-Min
    • Biomolecules & Therapeutics
    • /
    • v.26 no.1
    • /
    • pp.57-68
    • /
    • 2018
  • Nuclear factor E2-related factor 2 (NRF2) plays an important role in redox metabolism and antioxidant defense. Under normal conditions, NRF2 proteins are maintained at very low levels because of their ubiquitination and proteasomal degradation via binding to the kelch-like ECH associated protein 1 (KEAP1)-E3 ubiquitin ligase complex. However, oxidative and/or electrophilic stresses disrupt the KEAP1-NRF2 interaction, which leads to the accumulation and transactivation of NRF2. During recent decades, a growing body of evidence suggests that NRF2 is frequently activated in many types of cancer by multiple mechanisms, including the genetic mutations in the KEAP1-NRF2 pathway. This suggested that NRF2 inhibition is a promising strategy for cancer therapy. Recently, several NRF2 inhibitors have been reported with anti-tumor efficacy. Here, we review the mechanisms whereby NRF2 is dysregulated in cancer and its contribution to the tumor development and radiochemoresistance. In addition, among the NRF2 inhibitors reported so far, we summarize and discuss repurposed NRF2 inhibitors with their potential mechanisms and provide new insights to develop selective NRF2 inhibitors.

HQSAR Study of Tricyclic Azepine Derivatives as an EGFR (Epidermal Growth Factor Receptor) Inhibitors

  • Chung, Hwan-Won;Lee, Kyu-Whan;Oh, Jung-Soo;Cho, Seung-Joo
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.3
    • /
    • pp.159-164
    • /
    • 2007
  • Stimulation of epidermal growth factor receptor (EGFR) is essential in signaling pathway of tumor cells. Thus, EGFR has intensely studied as an anticancer target. We developed hologram quantitative structure activity relationship (HQSAR) models for data set which consists of tricyclic azepine derivatives showing inhibitory activities for EGFR. The optimal HQSAR model was generated with fragment size of 6 to 7 while differentiating fragments having different atom and connectivity. The model showed cross-validated $q^2$ value of 0.61 and non-cross-validated $r^2$ value of 0.93. When the model was validated with an external set excluding one outlier, it gave predictive $r^2$ value of 0.43. The contribution maps generated from this model were used to interpret the atomic contribution of each atom to the overall inhibition activity. This can be used to find more efficient EGFR inhibitors.

Effects of Rad51 on Survival of A549 Cells

  • Yu, Sha-Sha;Tu, Yi;Xu, Lin-Lin;Tao, Xue-Qin;Xu, Shan;Wang, Shan-Shan;Xiong, Yi-Feng;Mei, Jin-Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.1
    • /
    • pp.175-179
    • /
    • 2015
  • Rad51, a key factor in the homologous recombination pathway for the DNA double-strand break repair, plays a vital role in genesis of non-small-cell lung cancer (NSCLC). In recent years, more and more studies indicate that high expression of Rad51 is of great relevance to resistance of NSCLC to chemotherapeutic agents and ionizing radiation. However, the underlying molecular mechanisms are poorly understood. In this study, we investigated the role of single Rad51 on cell viability in vitro. Our results show that depletion of endogenous Rad51 is sufficient to inhibit the growth of the A549 lung cancer cell line, by accumulating cells in G1 phase and inducing cell death. We conclude that independent Rad51 expression is critical to the survival of A549 cells and can be an independent prognostic factor in NSCLC patients.

Effects of nanoparticulate saponin-platinum conjugates on 2,4-dinitrofluorobenzene-induced macrophage inflammatory protein-2 gene expression via reactive oxygen species production in RAW 264.7 cells

  • Kim, Young-Jin;Kim, Dong-Bum;Lee, Young-Hee;Choi, Soo-Young;Park, Jin-Seu;Lee, Seung-Yong;Park, Joon-Won;Kwon, Hyung-Joo
    • BMB Reports
    • /
    • v.42 no.5
    • /
    • pp.304-309
    • /
    • 2009
  • Nanoparticulate platinum (II) (nano Pt) is a powerful antioxidant that is widely used to scavenge reactive oxygen species (ROS). The antioxidant activity of nano Pt has gained attention as a potentially useful therapeutic for a variety of diseases including cancer and aging. In the present study, we prepared nanoparticulate saponin-Pt (II) (nano saponin-Pt) conjugates using the ethanol reduction method to enhance the permeability and retention effect of Pt. The nano saponin-Pt conjugates were found to restore the viability of approximately 40% of 2,4-dinitrofluorobenzene (DNFB)-treated RAW 264.7 cells. In addition, we found that nano saponin-Pt conjugates acted as a potent antioxidant that reduced the production of ROS and inhibited activation of the MAP kinase pathway and MIP-2 gene expression in response to DNFB. These results provide insight into the potential usefulness of nano saponin-Pt conjugates as a treatment for contact hypersensitivity.

Novel calcineurin interacting protein-2: the functional characterization of CNP-2 in Caenorhabditis elegans

  • Xianglan, Cai;Ko, Kyung-Min;Singaravelu, Gunasekaran;Ahnn, Joo-Hong
    • BMB Reports
    • /
    • v.41 no.6
    • /
    • pp.455-460
    • /
    • 2008
  • Calcineurin (Cn) is a serine/threonine phosphatase implicated in a wide variety of biological responses. To identify proteins that mediate Cn signaling pathway effects, we used yeast two-hybrid assays to screen for Cn interacting proteins, discovering a protein encoded by the gene, cnp-2 (Y46G5A.10). Utilizing serially deleted forms of Cn as baits, we demonstrated that the catalytic domain of Cn (TAX-6) binds with CNP-2, and this physical interaction was able to be reconstituted in vitro, supporting our yeast two-hybrid results. cnp-2 is a nematode-specific novel gene found in C. elegans as well as its closest relative, C. briggsae. CNP-2 was strongly expressed in the intestine of C. elegans. To study the function of cnp-2, we performed cnp-2 RNAi knock-down and characterized phenotypes associated with Cn mutants. However, no gross defects were revealed in these RNAi experiments. CNP-2 was proven to be a Cn binding protein; however, its role remains to be elucidated.