• 제목/요약/키워드: Molecular docking study

검색결과 202건 처리시간 0.024초

Binding Mode Analysis of Bacillus subtilis Obg with Ribosomal Protein L13 through Computational Docking Study

  • Lee, Yu-No;Bang, Woo-Young;Kim, Song-Mi;Lazar, Prettina;Bahk, Jeong-Dong;Lee, Keun-Woo
    • Interdisciplinary Bio Central
    • /
    • 제1권1호
    • /
    • pp.3.1-3.6
    • /
    • 2009
  • Introduction: GTPases known as translation factor play a vital role as ribosomal subunit assembly chaperone. The bacterial Obg proteins ($Spo{\underline{0B}}$-associated ${\underline{G}}TP$-binding protein) belong to the subfamily of P-loop GTPase proteins and now it is considered as one of the new target for antibacterial drug. The majority of bacterial Obgs have been commonly found to be associated with ribosome, implying that these proteins may play a fundamental role in ribosome assembly or maturation. In addition, one of the experimental evidences suggested that Bacillus subtilis Obg (BsObg) protein binds to the L13 ribosomal protein (BsL13) which is known to be one of the early assembly proteins of the 50S ribosomal subunit in Escherichia coli. In order to investigate binding mode between the BsObg and the BsL13, protein-protein docking simulation was carried out after generating 3D structure of the BsL13 structure using homology modeling method. Materials and Methods: Homology model structure of BsL13 was generated using the EcL13 crystal structure as a template. Protein-protein docking of BsObg protein with ribosomal protein BsL13 was performed by DOT, a macro-molecular docking software, in order to predict a reasonable binding mode. The solvated energy minimization calculation of the docked conformation was carried out to refine the structure. Results and Discussion: The possible binding conformation of BsL13 along with activated Obg fold in BsObg was predicted by computational docking study. The final structure is obtained from the solvated energy minimization. From the analysis, three important H-bond interactions between the Obg fold and the L13 were detected: Obg:Tyr27-L13:Glu32, Obg:Asn76-L13:Glu139, and Obg:Ala136-L13:Glu142. The interaction between the BsObg and BsL13 structures were also analyzed by electrostatic potential calculations to examine the interface surfaces. From the results, the key residues for hydrogen bonding and hydrophobic interaction between the two proteins were predicted. Conclusion and Prospects: In this study, we have focused on the binding mode of the BsObg protein with the ribosomal BsL13 protein. The interaction between the activated Obg and target protein was investigated with protein-protein docking calculations. The binding pattern can be further used as a base for structure-based drug design to find a novel antibacterial drug.

Molecular Docking Study of Aminoacyl-tRNA Synthetases with Ligand Molecules from Four Different Scaffolds

  • Bharatham, Nagakumar;Bharatham, Kavitha;Lee, Yu-No;Kim, Song-Mi;Lazar, Prettina;Baek, A-Young;Park, Chan-In;Eum, Hee-Sung;Ha, Hyun-Joon;Yun, Sae-Young;Lee, Won-Koo;Kim, Sung-Hoon;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권3호
    • /
    • pp.606-610
    • /
    • 2010
  • Aminoacyl-tRNA synthetases (aaRSs) play vital roles in protein biosynthesis of living organisms and are interesting antibacterial drug targets. In order to find out new inhibitor candidate molecules as antibacterial agent, the binding modes of the candidate molecules were investigated at the active sites of aaRSs by molecular docking study. The docking simulations were performed with 48 compounds from four different scaffolds into the eight different aaRSs. The results show that scaffolds 3 and 4 compounds have consistently better binding capabilities, specifically for HisRS (E. coli) and IleRS (S. aureus). The binding modes of the best compounds with the proteins were well compatible with those of two ligands in crystal structures. Therefore, we expect that the final compounds we present may have reasonable aaRS inhibitory activity.

3D-QSAR, Docking and Molecular Dynamics Simulation Study of C-Glycosylflavones as GSK-3β Inhibitors

  • Ghosh, Suparna;Keretsu, Seketoulie;Cho, Seung Joo
    • 통합자연과학논문집
    • /
    • 제13권4호
    • /
    • pp.170-180
    • /
    • 2020
  • Abnormal regulation, hyperphosphorylation, and aggregation of the tau protein are the hallmark of several types of dementia, including Alzheimer's Disease. Increased activity of Glycogen Synthase Kinase-3β (GSK-3β) in the Central Nervous System (CNS), increased the tau hyperphosphorylation and caused the neurofibrillary tangles (NFTs) formation in the brain cells. Over the last two decades, numerous adenosine triphosphate (ATP) competitive inhibitors have been discovered that show inhibitory activity against GSK-3β. But these compounds exhibited off-target effects which motivated researchers to find new GSK-3β inhibitors. In the present study, we have collected the dataset of 31 C-Glycosylflavones derivatives that showed inhibitory activity against GSK-3β. Among the dataset, the most active compound was docked with the GSK-3β and molecular dynamics (MD) simulation was performed for 50 ns. Based on the 50 ns MD pose of the most active compound, the other dataset compounds were sketched, minimized, and aligned. The 3D-QSAR based Comparative Molecular Field Analysis (CoMFA) model was developed, which showed a reasonable value of q2=0.664 and r2=0.920. The contour maps generated based on the CoMFA model elaborated on the favorable substitutions at the R2 position. This study could assist in the future development of new GSK-3β inhibitors.

Efficiency of Lamarckian Genetic Algorithm in Molecular Docking of Phenylaminopyrimidine (PAP) Derivatives: A Retrospect Study

  • Ratilla, Eva Marie A.;Juan, Amor A. San
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2004년도 The 3rd Annual Conference for The Korean Society for Bioinformatics Association of Asian Societies for Bioinformatics 2004 Symposium
    • /
    • pp.203-209
    • /
    • 2004
  • Molecular docking using Lamarckian genetic algorithm of AutoDock 3.0 (AD3) was employed to understand in retrospect the selectivity of phenylaminopyrimidine (PAP) derivatives against the kinase domain c-Abl, implicated in chronic myelogenous leukemia (CML). The energetics of protein-ligand complex was scored using AD3 to identify active drug conformations while Ligplot and ligand protein contact (LPC) programs were used to probe schematic molecular recognition of the bound inhibitor to the protein. Results signify correlation between model and crystal structures of STI-571 compound or Imatinib (IM), a PAP derivative and now clinically proven for its efficacy in CML. A prospect active form Abl inhibitor scaffold from matlystatin class of compounds will be published elsewhere.

  • PDF

Molecular docking of bioactive compounds derived from Moringa oleifera with p53 protein in the apoptosis pathway of oral squamous cell carcinoma

  • Rath, Sonali;Jagadeb, Manaswini;Bhuyan, Ruchi
    • Genomics & Informatics
    • /
    • 제19권4호
    • /
    • pp.46.1-46.11
    • /
    • 2021
  • Moringa oleifera is nowadays raising as the most preferred medicinal plant, as every part of the moringa plant has potential bioactive compounds which can be used as herbal medicines. Some bioactive compounds of M. oleifera possess potential anti-cancer properties which interact with the apoptosis protein p53 in cancer cell lines of oral squamous cell carcinoma. This research work focuses on the interaction among the selected bioactive compounds derived from M. oleifera with targeted apoptosis protein p53 from the apoptosis pathway to check whether the bioactive compound will induce apoptosis after the mutation in p53. To check the toxicity and drug-likeness of the selected bioactive compound derived from M. oleifera based on Lipinski's Rule of Five. Detailed analysis of the 3D structure of apoptosis protein p53. To analyze protein's active site by CASTp 3.0 server. Molecular docking and binding affinity were analyzed between protein p53 with selected bioactive compounds in order to find the most potential inhibitor against the target. This study shows the docking between the potential bioactive compounds with targeted apoptosis protein p53. Quercetin was the most potential bioactive compound whereas kaempferol shows poor affinity towards the targeted p53 protein in the apoptosis pathway. Thus, the objective of this research can provide an insight prediction towards M. oleifera derived bioactive compounds and target apoptosis protein p53 in the structural analysis for compound isolation and in-vivo experiments on the cancer cell line.

Docking Study of Human Galactokinase Inhibitors

  • Babu, Sathya
    • 통합자연과학논문집
    • /
    • 제8권4호
    • /
    • pp.267-272
    • /
    • 2015
  • Galactosemia is a potentially lethal disorder caused by the deficiency of the enzyme galactose-1-phosphate uridyltransferase (GALT) within the Leloir pathway. Galactokinase (GALK) is the enzyme in Leloir pathway which converts ${\alpha}$-D galactose to galactose 1-phosphate. The elevated level of galactose-1-phosphate, the product of GALK plays a major role in Galactosemia. Therefore the inhibition of GALK is a novel therapy for this disorder. Hence in the present study, we performed molecular docking of twenty inhibitors with different activity against galactokinase into the active site of galactokinase enzyme. The binding mode of these inhibitors was obtained using Surflex dock program interfaced in Sybyl-X2.0. The residues such as SER141, TYR109, ARG105, ARG228, TYR106, GLY346, GLY136, ASP86, ASP186 and SER142 found to interact with inhibitors.

Proposal of Dual Inhibitor Targeting ATPase Domains of Topoisomerase II and Heat Shock Protein 90

  • Jun, Kyu-Yeon;Kwon, Youngjoo
    • Biomolecules & Therapeutics
    • /
    • 제24권5호
    • /
    • pp.453-468
    • /
    • 2016
  • There is a conserved ATPase domain in topoisomerase II (topo II) and heat shock protein 90 (Hsp90) which belong to the GHKL (gyrase, Hsp90, histidine kinase, and MutL) family. The inhibitors that target each of topo II and Hsp90 are intensively studied as anti-cancer drugs since they play very important roles in cell proliferation and survival. Therefore the development of dual targeting anti-cancer drugs for topo II and Hsp90 is suggested to be a promising area. The topo II and Hsp90 inhibitors, known to bind to their ATP binding site, were searched. All the inhibitors investigated were docked to both topo II and Hsp90. Four candidate compounds as possible dual inhibitors were selected by analyzing the molecular docking study. The pharmacophore model of dual inhibitors for topo II and Hsp90 were generated and the design of novel dual inhibitor was proposed.

Identification of inhibitors against ROS1 targeting NSCLC by In- Silico approach

  • Bavya, Chandrasekhar
    • 통합자연과학논문집
    • /
    • 제15권4호
    • /
    • pp.171-177
    • /
    • 2022
  • ROS1 (c-ros oncogene) is one of the gene with mutation in NSCLC (non-small cell lung cancer). The increased expression of ROS1 is leading to the increase proliferation of cell, cell migration and survival. Crizotinib and Entrectinib are the drugs that have been approved by FDA against ROS1 protein, but recently patients started to develop resistance against Crizotinib and there is a need of new drug that could act as an effective drug against ROS1 for NSCLC. In this study, we have performed virtual screening, where compounds are taken from Zinc 15 dataset and molecular docking was performed. The top compounds were taken based upon their binding affinity and their interactions with the residues. The compounds stability and chemical reactivity was also studied through Density Functional theory and their properties. Further study of these compounds could reveal the required information of ROS1-inhibitor complex and in the discovery of potent inhibitors.

Phytocompounds from T. conoides identified for targeting JNK2 protein in breast cancer

  • Sruthy, Sathish;Thirumurthy, Madhavan
    • 통합자연과학논문집
    • /
    • 제15권4호
    • /
    • pp.153-161
    • /
    • 2022
  • c-Jun N-terminal kinases (JNKs) are members of MAPK family. Many genes can relay signals that promote inflammation, cell proliferation, or cell death which causes several diseases have been associated to mutations in the JNK gene family. The JNK2 gene is significantly more important in cancer development than the JNK1 and JNK3 genes. There are several different ways in which JNK2 contributes to breast cancer, and one of these is through its role in cell migration. As a result, this study's primary objective was to employ computational strategies to identify promising leads that potentially target the JNK2 protein in a strategy to alleviate breast cancer. We have derived these anticancer compounds from marine brown seaweed called Turbinaria conoides. We have identified compounds Ethane, 1, 1-diethoxy- and Butane, 2-ethoxy as promising anti-cancer drugs by molecular docking, DFT, and ADME study.