• Title/Summary/Keyword: Molecular docking simulation

Search Result 56, Processing Time 0.026 seconds

Quantitative Structure-Activity Relationships and Molecular Docking Studies of P56 LCK Inhibitors

  • Bharatham, Nagakumar;Bharatham, Kavitha;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.266-272
    • /
    • 2006
  • Three-dimensional quantitative structure-activity relationship (3D-QSAR) models were developed for 67 molecules of 2-amino-benzothiazole-6-anilide derivatives against lymphocyte-specific protein tyrosine kinase (P56 LCK). The molecular field analysis (MFA) and receptor surface analysis (RSA) were employed for QSAR studies and the predictive ability of the model was validated by 15 test set molecules. Structure-based investigations using molecular docking simulation were performed with the crystal structure of P56 LCK. Good correlation between predicted fitness scores versus observed activities was demonstrated. The results suggested that the nature of substitutions at the 2-amino and 6-anilide positions were crucial in enhancing the activity, thereby providing new guidelines for the design of novel P56 LCK inhibitors.

Exploration of the Binding Mode of Indole Derivatives as Potent HIV-1 Inhibitors Using Molecular Docking Simulations

  • Balupuri, Anand;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.6 no.3
    • /
    • pp.138-142
    • /
    • 2013
  • The HIV-1 envelope glycoprotein gp120 plays a vital role in the entry of the virus into the host cells. The crucial role of the glycoprotein suggests gp120 as potential drug target for the future antiviral therapies. Identification of the binding mode of small drug like compounds has been an important goal in drug design. In the current study we attempt to propose binding mode of indole derivatives in the binding pocket of gp120. These derivatives are reported to inhibit HIV-1 by acting as attachment inhibitors that bind to gp120 and prevent the gp120-CD4 interaction and thus inhibit the infectivity of HIV-1. To elucidate the molecular basis of the small molecules interactions to inhibit the glycoprotein function we employed the molecular docking simulation approach. This study provides insights to elucidate the binding pattern of indole-based gp120 inhibitors and may help in the rational design of novel HIV-1 inhibitors with improved potency.

Pharmacophore Modeling and Molecular Dynamics Simulation to Find the Potent Leads for Aurora Kinase B

  • Sakkiah, Sugunadevi;Thangapandian, Sundarapandian;Kim, Yong-Seong;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.869-880
    • /
    • 2012
  • Identification of the selective chemical features for Aurora-B inhibitors gained much attraction in drug discovery for the treatment of cancer. Hence to identify the Aurora-B critical features various techniques were utilized such as pharmacophore generation, virtual screening, homology modeling, molecular dynamics, and docking. Top ten hypotheses were generated for Aurora-B and Aurora-A. Among ten hypotheses, HypoB1 and HypoA1 were selected as a best hypothesis for Aurora-B and Aurora-A based on cluster analysis and ranking score, respectively. Test set result revealed that ring aromatic (RA) group in HypoB1 plays an essential role in differentiates Aurora-B from Aurora-A inhibitors. Hence, HypoB1 used as 3D query in virtual screening of databases and the hits were sorted out by applying drug-like properties and molecular docking. The molecular docking result revealed that 15 hits have shown strong hydrogen bond interactions with Ala157, Glu155, and Lys106. Hence, we proposed that HypoB1 might be a reasonable hypothesis to retrieve the structurally diverse and selective leads from various databases to inhibit Aurora-B.

3D-QSAR, Docking and Molecular Dynamics Simulation Study of C-Glycosylflavones as GSK-3β Inhibitors

  • Ghosh, Suparna;Keretsu, Seketoulie;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.13 no.4
    • /
    • pp.170-180
    • /
    • 2020
  • Abnormal regulation, hyperphosphorylation, and aggregation of the tau protein are the hallmark of several types of dementia, including Alzheimer's Disease. Increased activity of Glycogen Synthase Kinase-3β (GSK-3β) in the Central Nervous System (CNS), increased the tau hyperphosphorylation and caused the neurofibrillary tangles (NFTs) formation in the brain cells. Over the last two decades, numerous adenosine triphosphate (ATP) competitive inhibitors have been discovered that show inhibitory activity against GSK-3β. But these compounds exhibited off-target effects which motivated researchers to find new GSK-3β inhibitors. In the present study, we have collected the dataset of 31 C-Glycosylflavones derivatives that showed inhibitory activity against GSK-3β. Among the dataset, the most active compound was docked with the GSK-3β and molecular dynamics (MD) simulation was performed for 50 ns. Based on the 50 ns MD pose of the most active compound, the other dataset compounds were sketched, minimized, and aligned. The 3D-QSAR based Comparative Molecular Field Analysis (CoMFA) model was developed, which showed a reasonable value of q2=0.664 and r2=0.920. The contour maps generated based on the CoMFA model elaborated on the favorable substitutions at the R2 position. This study could assist in the future development of new GSK-3β inhibitors.

Cyclooxygenase-2 Inhibitor Parecoxib Was Disclosed as a PPAR-γ Agonist by In Silico and In Vitro Assay

  • Xiao, Bin;Li, Dan-dan;Wang, Ying;Kim, Eun La;Zhao, Na;Jin, Shang-Wu;Bai, Dong-Hao;Sun, Li-Dong;Jung, Jee H.
    • Biomolecules & Therapeutics
    • /
    • v.29 no.5
    • /
    • pp.519-526
    • /
    • 2021
  • In a search for effective PPAR-γ agonists, 110 clinical drugs were screened via molecular docking, and 9 drugs, including parecoxib, were selected for subsequent biological evaluation. Molecular docking of parecoxib to the ligand-binding domain of PPAR-γ showed high binding affinity and relevant binding conformation compared with the PPAR-γ ligand/antidiabetic drug rosiglitazone. Per the docking result, parecoxib showed the best PPAR-γ transactivation in Ac2F rat liver cells. Further docking simulation and a luciferase assay suggested parecoxib would be a selective (and partial) PPAR-γ agonist. PPAR-γ activation by parecoxib induced adipocyte differentiation in 3T3-L1 murine preadipocytes. Parecoxib promoted adipogenesis in a dose-dependent manner and enhanced the expression of adipogenesis transcription factors PPAR-γ, C/EBPα, and C/EBPβ. These data indicated that parecoxib might be utilized as a partial PPAR-γ agonist for drug repositioning study.

Elucidation of the Inhibitory Effect of Phytochemicals with Kir6.2 Wild-Type and Mutant Models Associated in Type-1 Diabetes through Molecular Docking Approach

  • Jagadeb, Manaswini;Konkimalla, V. Badireenath;Rath, Surya Narayan;Das, Rohit Pritam
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.283-288
    • /
    • 2014
  • Among all serious diseases globally, diabetes (type 1 and type 2) still poses a major challenge to the world population. Several target proteins have been identified, and the etiology causing diabetes has been reasonably well studied. But, there is still a gap in deciding on the choice of a drug, especially when the target is mutated. Mutations in the KCNJ11 gene, encoding the kir6.2 channel, are reported to be associated with congenital hyperinsulinism, having a major impact in causing type 1 diabetes, and due to the lack of its 3D structure, an attempt has been made to predict the structure of kir6.2, applying fold recognition methods. The current work is intended to investigate the affinity of four phytochemicals namely, curcumin (Curcuma longa), genistein (Genista tinctoria), piperine (Piper nigrum), and pterostilbene (Vitis vinifera) in a normal as well as in a mutant kir6.2 model by adopting a molecular docking methodology. The phytochemicals were docked in both wild and mutated kir6.2 models in two rounds: blind docking followed by ATP-binding pocket-specific docking. From the binding pockets, the common interacting amino acid residues participating strongly within the binding pocket were identified and compared. From the study, we conclude that these phytochemicals have strong affinity in both the normal and mutant kir6.2 model. This work would be helpful for further study of the phytochemicals above for the treatment of type 1 diabetes by targeting the kir6.2 channel.

Computer-aided drug design of Azadirachta indica compounds against nervous necrosis virus by targeting grouper heat shock cognate protein 70 (GHSC70): quantum mechanics calculations and molecular dynamic simulation approaches

  • Islam, Sk Injamamul;Saloa, Saloa;Mahfuj, Sarower;Islam, Md Jakiul;Jahan Mou, Moslema
    • Genomics & Informatics
    • /
    • v.20 no.3
    • /
    • pp.33.1-33.17
    • /
    • 2022
  • Nervous necrosis virus (NNV) is a deadly infectious disease that affects several fish species. It has been found that the NNV utilizes grouper heat shock cognate protein 70 (GHSC70) to enter the host cell. Thus, blocking the virus entry by targeting the responsible protein can protect the fishes from disease. The main objective of the study was to evaluate the inhibitory potentiality of 70 compounds of Azadirachta indica (Neem plant) which has been reported to show potential antiviral activity against various pathogens, but activity against the NNV has not yet been reported. The binding affinity of 70 compounds was calculated against the GHSC70 with the docking and molecular dynamics (MD) simulation approaches. Both the docking and MD methods predict 4 (PubChem CID: 14492795, 10134, 5280863, and 11119228) inhibitory compounds that bind strongly with the GHSC70 protein with a binding affinity of -9.7, -9.5, -9.1, and -9.0 kcal/mol, respectively. Also, the ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties of the compounds confirmed the drug-likeness properties. As a result of the investigation, it may be inferred that Neem plant compounds may act as significant inhibitors of viral entry into the host cell. More in-vitro testing is needed to establish their effectiveness.

Structural Analysis of Recombinant Human Preproinsulins by Structure Prediction, Molecular Dynamics, and Protein-Protein Docking

  • Jung, Sung Hun;Kim, Chang-Kyu;Lee, Gunhee;Yoon, Jonghwan;Lee, Minho
    • Genomics & Informatics
    • /
    • v.15 no.4
    • /
    • pp.142-146
    • /
    • 2017
  • More effective production of human insulin is important, because insulin is the main medication that is used to treat multiple types of diabetes and because many people are suffering from diabetes. The current system of insulin production is based on recombinant DNA technology, and the expression vector is composed of a preproinsulin sequence that is a fused form of an artificial leader peptide and the native proinsulin. It has been reported that the sequence of the leader peptide affects the production of insulin. To analyze how the leader peptide affects the maturation of insulin structurally, we adapted several in silico simulations using 13 artificial proinsulin sequences. Three-dimensional structures of models were predicted and compared. Although their sequences had few differences, the predicted structures were somewhat different. The structures were refined by molecular dynamics simulation, and the energy of each model was estimated. Then, protein-protein docking between the models and trypsin was carried out to compare how efficiently the protease could access the cleavage sites of the proinsulin models. The results showed some concordance with experimental results that have been reported; so, we expect our analysis will be used to predict the optimized sequence of artificial proinsulin for more effective production.

Identification of New Potential APE1 Inhibitors by Pharmacophore Modeling and Molecular Docking

  • Lee, In Won;Yoon, Jonghwan;Lee, Gunhee;Lee, Minho
    • Genomics & Informatics
    • /
    • v.15 no.4
    • /
    • pp.147-155
    • /
    • 2017
  • Apurinic/apyrimidinic endonuclease 1 (APE1) is an enzyme responsible for the initial step in the base excision repair pathway and is known to be a potential drug target for treating cancers, because its expression is associated with resistance to DNA-damaging anticancer agents. Although several inhibitors already have been identified, the identification of novel kinds of potential inhibitors of APE1 could provide a seed for the development of improved anticancer drugs. For this purpose, we first classified known inhibitors of APE1. According to the classification, we constructed two distinct pharmacophore models. We screened more than 3 million lead-like compounds using the pharmacophores. Hits that fulfilled the features of the pharmacophore models were identified. In addition to the pharmacophore screen, we carried out molecular docking to prioritize hits. Based on these processes, we ultimately identified 1,338 potential inhibitors of APE1 with predicted binding affinities to the enzyme.

Macromolecular Docking Simulation to Identify Binding Site of FGB1 for Antifungal Compounds

  • Soundararajan, Prabhakaran;Sakkiah, Sugunadevi;Sivanesan, Iyyakkannu;Lee, Keun-Woo;Jeong, Byoung-Ryong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3675-3681
    • /
    • 2011
  • Fusarium oxysporum, an important pathogen that mainly causes vascular or fusarium wilt disease which leads to economic loss. Disruption of gene encoding a heterotrimeric G-protein-${\beta}$-subunit (FGB1), led to decreased intracellular cAMP levels, reduced pathogenicity, colony morphology, and germination. The plant defense protein, Nicotiana alata defensin (NaD1) displays potent antifungal activity against a variety of agronomically important filamentous fungi. In this paper, we performed a molecular modeling and docking studies to find vital amino acids which can interact with various antifungal compounds using Discovery Studio v2.5 and GRAMMX, respectively. The docking results from FGB1-NaD1 and FGB1-antifungal complexes, revealed the vital amino acids such as His64, Trp65, Ser194, Leu195, Gln237, Phe238, Val324 and Asn326, and suggested that the anidulafungin is a the good antifungal compound.The predicted interaction can greatly assist in understanding structural insights for studying the pathogen and host-component interactions.