• 제목/요약/키워드: Molecular diffusion

검색결과 445건 처리시간 0.038초

Molecular Dynamics Simulation for Monolayers of Alkyl Thiol Molecules at Air-Solid Interfaces

  • 이송희;김한수
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권8호
    • /
    • pp.700-706
    • /
    • 1996
  • We present the results of molecular dynamics simulations of monolayers of long-chain alkyl thiol [S(CH2)15CH3] molecules on an air-solid interface using the extended collapsed atom model for the chain-molecule and a gold surface for the solid surface. Several molecular dynamics simulations have been performed on monolayers with areas per molecule ranging from 18.30 to 32.10 Å2/molecule. It is found that there exist three possible transitions: a continuous transition characterized by a change in molecular configuration without change in lattice structure, a sudden transition characterized by the distinct lattice defects and perfect islands, and a third transition characterized by the appearance of a random, liquid-like state. The analysis of probability distributions of the segments shows that the structure of the chain-molecules at the air-solid interface is completely different from that at the air-water interface in the view of the degree of overlap of the probability distributions of the neighbor segments. The calculated diffusion coefficients of the chain-molecules on the monolayers seem to be not directly related to any one of the three transitions. However, the large diffusion of the molecules enhanced by the increment of the area per molecule may induce the second transition.

다공성 확산층을 이용한 한계전류형 지르코니아 산소센서 (Limit-current type zirconia oxygen sensor with porous diffusion layer)

  • 오영제;이칠형
    • 센서학회지
    • /
    • 제17권5호
    • /
    • pp.329-337
    • /
    • 2008
  • Simple, small and portable oxygen sensors were fabricated by tape casting technique. Yttria stabilized zirconia containing cordierite ceramics (YSZC) were used as a porous diffused layer of oxygen in pumping cell. Yttria stabilized zirconia (YSZ) solid electrolyte, YSZC porous diffusion layer and heater-patterned ceramic sheets were prepared by co- firing method. Limit current characteristics and the linear relationship of current to oxygen concentration were observed. Viscosity variation of the slurries both YSZ and YSZC showed a similar behavior, but micro pores in the fired sheet were increased with increasing of the cordierite amount. Molecular diffusion was dominated due to the formation of large pores in porous diffusion layer. The plateau range of limit current in porous-type oxygen sensor was narrow than the one of aperture-type oxygen sensor. However limit current curve was appeared in porous-type oxygen sensor even at the lower applied voltage. The plateau range of limit-current was widen as increasing the thickness of porous diffusion layer of the YSZ containing cordierite. Measuring temperature of $600{\sim}650^{\circ}C$ was recommended for limit-current oxygen sensor. Porous diffusion layer-type oxygen sensor showed faster response than the aperture-type one and was stable up to 30 days running without any crack at interface between the layers.

다공성 흑연의 기공내부로 침투하는 Si 증발입자의 확산 (Diffusion of Si Vapor Infiltrating into Porous Graphite)

  • 박장식;황정태
    • 한국표면공학회지
    • /
    • 제49권1호
    • /
    • pp.104-109
    • /
    • 2016
  • Graphite's thermal stability facilitates its widespread use as crucibles and molds in high temperatures processes. However, carbon atoms can be rather easily detached from pores and outer surfaces of the graphite due to the weak molecular force of the c axis of graphites. Detached carbon atoms are known to become a source of dust during fabrication processes, eventually lowering the effective yield of products. As an effort to reduce these problems of dust scattering, we have fabricated SiC composites by employing Si vapor infiltration method into the pores of graphites. In order to understand the diffusion process of the Si vapor infiltration, Si and C atomic percentages of fabricated SiC composites are carefully measured and the diffusion law is used to estimate the diffusion coefficient of Si vapor. A quadratic equation is obtained from the experimental results using the least square method. Diffusion coefficient of Si vapor is estimated using this quadratic equation. The result shows that the diffusion length obtained through the Si vapor infiltration method is about 10.7 times longer than that obtained using liquid Si and clearly demonstrates the usefulness of the present method.

Dynamic Contrast Enhanced MRI and Intravoxel Incoherent Motion to Identify Molecular Subtypes of Breast Cancer with Different Vascular Normalization Gene Expression

  • Wan-Chen Tsai;Kai-Ming Chang;Kuo-Jang Kao
    • Korean Journal of Radiology
    • /
    • 제22권7호
    • /
    • pp.1021-1033
    • /
    • 2021
  • Objective: To assess the expression of vascular normalization genes in different molecular subtypes of breast cancer and to determine whether molecular subtypes with a higher vascular normalization gene expression can be identified using dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI). Materials and Methods: This prospective study evaluated 306 female (mean age ± standard deviation, 50 ± 10 years), recruited between January 2014 and August 2017, who had de novo breast cancer larger than 1 cm in diameter (308 tumors). DCE MRI followed by IVIM DWI studies using 11 different b-values (0 to 1200 s/mm2) were performed on a 1.5T MRI system. The Tofts model and segmented biexponential IVIM analysis were used. For each tumor, the molecular subtype (according to six [I-VI] subtypes and PAM50 subtypes), expression profile of genes for vascular normalization, pericytes, and normal vascular signatures were determined using freshly frozen tissue. Statistical associations between imaging parameters and molecular subtypes were examined using logistic regression or linear regression with a significance level of p = 0.05. Results: Breast cancer subtypes III and VI and PAM50 subtypes luminal A and normal-like exhibited a higher expression of genes for vascular normalization, pericyte markers, and normal vessel function signature (p < 0.001 for all) compared to other subtypes. Subtypes III and VI and PAM50 subtypes luminal A and normal-like, versus the remaining subtypes, showed significant associations with Ktrans, kep, vp, and IAUGCBN90 on DEC MRI, with relatively smaller values in the former. The subtype grouping was significantly associated with D, with relatively less restricted diffusion in subtypes III and VI and PAM50 subtypes luminal A and normal-like. Conclusion: DCE MRI and IVIM parameters may identify molecular subtypes of breast cancers with a different vascular normalization gene expression.

고검화도의 폴리(비닐 알코올)/디메틸설폭사이드 용액에서의 점성도 특성과 탐침입자의 확산 (Probe Diffusion and Viscosity Properties in Dimethyl Sulfoxide Solution of Poly(vinyl alcohol) with High Degree of Hydrolysis)

  • 엄효상;박일현
    • 폴리머
    • /
    • 제34권5호
    • /
    • pp.415-423
    • /
    • 2010
  • 고검화도(98%이상)의 폴리(비닐 알코올)(PVA)를 디메틸설폭사이드(DMSO) 용매에 녹인 뒤 PVA 준희박 용액 대에서 농도 $C{\simeq}0.14\;g/mL$까지 점성도를 측정하였으며, 이 시스템을 매트릭스로 하여 폴리스티렌(PS) 라텍스 입자의 확산운동 지연을 동적 광산란법으로 조사하였다. PVA/DMSO계의 점성도를 고유점성도 $[{\eta}]$로 스케일된 환산농도 $C[{\eta}]$에 대하여 도시하였을 때 C$[{\eta}]$ >2에서는 분자량 의존성이 강하게 나타났으며, 그 원인은 PVA 용액 내에 존재하는 불균일 영역때문인 것으로 추정하였다. 그러나 매트릭스 내에서 탐침입자의 확산운동은 모든 측정농도에서 단일모드로 관찰되었고, 용액상 및 용매상에서의 확산계수의 비인 D/Do를 $C[{\eta}]$로 도시할 때 전체 농도 범위에서 분자량 의존성은 전혀 나타나지 않았으나 신장지수함수의 적용 한계는 C$[{\eta}]$ >2.5인 것으로 관찰되었다.

Microporous Ceramic Membrane and Its Gas Separation Performance

  • Li, Lin;Li, Junhui;Qi, Xiwang
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1996년도 춘계 총회 및 학술발표회
    • /
    • pp.16-19
    • /
    • 1996
  • Separation with synthetic membrane have become increasingly important processes in many fields. In the most application of membrane process, polymer membrane is used. the main advantage of polymers as a material for membrane preparation is the relative simplicity of this film formation which enables one to obtain rather high permeability rates. However, polymeric membranes have several limitations, such as high temperature instability, swelling and decomposition in organic solvent, et. al.. These limitations can be overcome by inorganic membrane. At the present time, commercially available inorganic membranes have pore diameters ranging 5nm to 50mm, and the predominant flow regime in such membrane is Knudsen diffusion. Since the Knudsen permeability is directly proportional to the molecular velocity, gases can be separated due to their molecular masses. However, this separation mechanism is only of important for light gases such as H2 and He. Other separation mechanisms like surface diffusion, active diffusion can play an important role only with very small pore diameters(2nm) and give rise to large permselectivities. Therefore, preparation of inorganic membrane with nano-sized pore have been attracting more and more attention.

  • PDF

마이크로 채널에서 두 유체 혼합 (Two-Fluid Mixing in a Microchannel)

  • 류임정;김병재;성형진
    • 한국전산유체공학회지
    • /
    • 제8권2호
    • /
    • pp.16-23
    • /
    • 2003
  • A numerical study of the mixing of two fluids(pure water and a solution of glycerol in water) in a microchannel was carried out. By varying the glycerol content of the glycerol/water solution, the variation in mixing behavior with changes in the difference of the properties of the two fluids(e.g., viscosity, density, diffusivity) was investigated. The mixing phenomena were tested for three micromixers: a square mixer, a three-dimensional serpentine mixer, and a staggered herringbone mixer. The governing equations of continuity, momentum and solute mass fraction were solved numerically. To evaluate mixing performance, a criterion index of mixing of mixing uniformity was proposed. In the systems considered, the Reynolds numbers based on averaged properties were 1 and 10. For low Reynolds number (Re = 1), the mixing performance varied inversely with mass fraction of glycerol due to the dominance of molecular diffusion. The mixing performance by diffusion deteriorated due to a significant reduction in the residence time of the fluid inside the mixers.