• Title/Summary/Keyword: Molecular diagnostic methods

Search Result 195, Processing Time 0.031 seconds

A combined application of molecular docking technology and indirect ELISA for the serodiagnosis of bovine tuberculosis

  • Song, Shengnan;Zhang, Qian;Yang, Hang;Guo, Jia;Xu, Mingguo;Yang, Ningning;Yi, Jihai;Wang, Zhen;Chen, Chuangfu
    • Journal of Veterinary Science
    • /
    • v.23 no.3
    • /
    • pp.50.1-50.12
    • /
    • 2022
  • Background: There is an urgent need to find reliable and rapid bovine tuberculosis (bTB) diagnostics in response to the rising prevalence of bTB worldwide. Toll-like receptor 2 (TLR2) recognizes components of bTB and initiates antigen-presenting cells to mediate humoral immunity. Evaluating the affinity of antigens with TLR2 can form the basis of a new method for the diagnosis of bTB based on humoral immunity. Objectives: To develop a reliable and rapid strategy to improve diagnostic tools for bTB. Methods: In this study, we expressed and purified the sixteen bTB-specific recombinant proteins in Escherichia coli. The two antigenic proteins, MPT70 and MPT83, which were most valuable for serological diagnosis of bTB were screened. Molecular docking technology was used to analyze the affinity of MPT70, MPT83, dominant epitope peptide of MPT70 (M1), and dominant epitope peptide MPT83 (M2) with TLR2, combined with the detection results of enzyme-linked immunosorbent assay to evaluate the molecular docking effect. Results: The results showed that interaction surface Cα-atom root mean square deviation of proteins (M1, M2, MPT70, MPT83)-TLR2 protein are less than 2.5 A, showing a high affinity. It is verified by clinical serum samples that MPT70, MPT83, MPT70-MPT83 showed good diagnostic potential for the detection of anti-bTB IgG and M1, M2 can replace the whole protein as the detection antigen. Conclusions: Molecular docking to evaluate the affinity of bTB protein and TLR2 combined with ELISA provides new insights for the diagnosis of bTB.

Molecular methods for diagnosis of microbial pathogens in muga silkworm, Antheraea assamensis Helfer (Lepidoptera: Saturniidae)

  • Gangavarapu Subrahmanyam;Kangayam M. Ponnuvel;Kallare P Arunkumar;Kamidi Rahul;S. Manthira Moorthy;Vankadara Sivaprasad
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.47 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • The Indian golden muga silkworm, Antheraea assamensis Helfer is an economically important wild silkworm endemic to Northeastern part of India. In recent years, climate change has posed a threat to muga silk production due to the requirement that larvae be reared outdoors. Since the muga silkworm larvae are exposed to the vagaries of nature, the changing climate has increased the incidence of microbial diseases in the rearing fields. Accurate diagnosis of the disease causing pathogens and its associated epidemiology are prerequisites to manage the diseases in the rearing field. Although conventional microbial culturing methods are widely used to identify pathogenic bacteria, they would not provide meaningful information on a wide variety of silkworm pathogens. The information on use of molecular diagnostic tools in detection of microbial pathogens of wild silk moths is very limited. A wide range of molecular and immunodiagnostic techniques including denaturing gradient gel electrophoresis (DGGE), random amplified polymorphism (RAPD), 16S rRNA/ITSA gene sequencing, multiplex polymerase chain reaction (M-PCR), fluorescence in situ hybridization (FISH), immunofluorescence, and repetitive-element PCR (Rep-PCR), have been used for detecting and characterizing the pathogens of insects with economic significance. Nevertheless, the application of these molecular tools for detecting and typing entomopathogens in surveillance studies of muga silkworm rearing is very limited. Here, we discuss the possible application of these molecular techniques, their advantages and major limitations. These methods show promise in better management of diseases in muga ecosystem.

Radiolabeled Benzamide Derivatives for Development of Malignant Melanoma Imaging Agents

  • Ayoung Pyo;Boreum Song;Heejung Kim;Dong-Yeon Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.8 no.1
    • /
    • pp.25-32
    • /
    • 2022
  • Malignant melanoma has an aggressive nature and high metastatic potential that result in one of the highest cancer mortality rates. Over the past three decades, primary and metastatic melanoma incidence has rapidly increased. The recent advances in diagnostic technology have shown promise, but there is still an enormous need for specific detection methods to diagnose malignant melanoma. Positron emission tomography can visualize a particular biomarker of malignant melanoma and promise a noninvasive image of micrometastases. However, the development of PET radiopharmaceuticals remains necessary for diagnosing malignant melanoma by using positron emission tomography. In this review, the history and a general overview of PET radionuclide labeled benzamide derivatives, including their radiosynthesis, in vivo characterization, and evaluation, are provided as imaging agents for malignant melanoma.

Molecular Application in Psychiatry (정신과의 분자생물학 적용)

  • Choi, Ihn-Geun
    • Korean Journal of Biological Psychiatry
    • /
    • v.7 no.2
    • /
    • pp.115-122
    • /
    • 2000
  • The development of molecular biology has brought many changes in psychiatry. Molecular biology makes us possible to know the cause of mental disorders that provide the way to prevent the disorders, and to develop various accurate diagnostic and treatment methods for mental disorders. The author discusses the concept, cause, and treatment of mental disorders in the aspect of molecular biology. Importing the methods of molecular biology into psychiatry, we can anticipate to get a number of the goals of psychiatric genetics, including identification of specific susceptibility genes, clarification of the pathophysiological processes whereby these genes lead to symptoms, establishment of epigenetic factors that interact with these genes to produce disease, validation of nosological boundaries that more closely reflect the actions of these genes, and development of effective preventive and therapeutic interventions based on genetic counseling, gene therapy, and modification of permissive or protective environmental influences. In addition to their capacity to accelerate the discovery of new molecules participating in the nervous system's response to disease or to self-administered drugs, molecular biological strategies can also be used to determine how critical a particular gene product may be in mediating a cellular event with behavioral importance. Molecular biology probably enables us discover the environmental factors of mental disorders and allow rational drug design and gene therapies for mental disorders, by isolation of gene products that facilitate a basic understanding of the pathogenesis of these disorders. A specific genetic linkage may suggest a novel class of drugs that has not yet been tried. With respect to gene therapy, the hypothetical method would use a gene delivery system, most likely a modified virus, to insert a functional copy of a mutant gene into those brain cells that require the gene for normal function.

  • PDF

Nucleic acid-based molecular diagnostic testing of SARS-CoV-2 using self-collected saliva specimens

  • Hwang, Eurim C.;Kim, Jeong Hee
    • International Journal of Oral Biology
    • /
    • v.46 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • Since the outbreak of coronavirus disease 2019 (COVID-2019), the infection has spread worldwide due to the highly contagious nature of severe acute syndrome coronavirus (SARS-CoV-2). To manage SARS-CoV-2, the development of diagnostic assays that can quickly and accurately identify the disease in patients is necessary. Currently, nucleic acid-based testing and serology-based testing are two widely used approaches. Of these, nucleic acid-based testing with quantitative reverse transcription-PCR (RT-qPCR) using nasopharyngeal (NP) and/or oropharyngeal (OP) swabs is considered to be the gold standard. Recently, the use of saliva samples has been considered as an alternative method of sample collection. Compared to the NP and OP swab methods, saliva specimens have several advantages. Saliva specimens are easier to collect. Self-collection of saliva specimens can reduce the risk of infection to healthcare providers and reduce sample collection time and cost. Until recently, the sensitivity and accuracy of the data obtained using saliva specimens for SARS-CoV-2 detection was controversial. However, recent clinical research has found that sensitive and reliable data can be obtained from saliva specimens using RT-qPCR, with approximately 81% to 95% correspondence with the data obtained from NP and OP swabs. These data suggest that self-collected saliva is an alternative option for the diagnosis of COVID-19.

Calnexin as a dual-role biomarker: antibody-based diagnosis and therapeutic targeting in lung cancer

  • Soyeon Lim;Youngeun Ha;Boram Lee;Junho Shin;Taiyoun Rhim
    • BMB Reports
    • /
    • v.57 no.3
    • /
    • pp.155-160
    • /
    • 2024
  • Lung cancer carries one of the highest mortality rates among all cancers. It is often diagnosed at more advanced stages with limited treatment options compared to other malignancies. This study focuses on calnexin as a potential biomarker for diagnosis and treatment of lung cancer. Calnexin, a molecular chaperone integral to N-linked glycoprotein synthesis, has shown some associations with cancer. However, targeted therapeutic or diagnostic methods using calnexin have been proposed. Through 1D-LCMSMS, we identified calnexin as a biomarker for lung cancer and substantiated its expression in human lung cancer cell membranes using Western blotting, flow cytometry, and immunocytochemistry. Anti-calnexin antibodies exhibited complement-dependent cytotoxicity to lung cancer cell lines, resulting in a notable reduction in tumor growth in a subcutaneous xenograft model. Additionally, we verified the feasibility of labeling tumors through in vivo imaging using antibodies against calnexin. Furthermore, exosomal detection of calnexin suggested the potential utility of liquid biopsy for diagnostic purposes. In conclusion, this study establishes calnexin as a promising target for antibody-based lung cancer diagnosis and therapy, unlocking novel avenues for early detection and treatment.

Development of a Rapid Automated Fluorescent Lateral Flow Immunoassay to Detect Hepatitis B Surface Antigen (HBsAg), Antibody to HBsAg, and Antibody to Hepatitis C

  • Ryu, Ji Hyeong;Kwon, Minsuk;Moon, Joung-Dae;Hwang, Min-Woong;Lee, Jeong-Min;Park, Ki-Hyun;Yun, So Jeong;Bae, Hyun Jin;Choi, Aeran;Lee, Hyeyoung;Jung, Bongsu;Jeong, Juhee;Han, Kyungja;Kim, Yonggoo;Oh, Eun-Jee
    • Annals of Laboratory Medicine
    • /
    • v.38 no.6
    • /
    • pp.578-584
    • /
    • 2018
  • Background: Accurate, rapid, and cost-effective screening tests for hepatitis B virus (HBV) and hepatitis C virus (HCV) infection may be useful in laboratories that cannot afford automated chemiluminescent immunoassays (CLIAs). We evaluated the diagnostic performance of a novel rapid automated fluorescent lateral flow immunoassay (LFIA). Methods: A fluorescent LFIA using a small bench-top fluorescence reader, Automated Fluorescent Immunoassay System (AFIAS; Boditech Med Inc., Chuncheon, Korea), was developed for qualitative detection of hepatitis B surface antigen (HBsAg), antibody to HBsAg (anti-HBs), and antibody to HCV (anti-HCV) within 20 minutes. We compared the diagnostic performance of AFIAS with that of automated CLIAs-Elecsys (Roche Diagnostics GmbH, Penzberg, Germany) and ARCHITECT (Abbott Laboratories, Abbott Park, IL, USA)-using 20 seroconversion panels and 3,500 clinical serum samples. Results: Evaluation with the seroconversion panels demonstrated that AFIAS had adequate sensitivity for HBsAg and anti-HCV detection. From the clinical samples, AFIAS sensitivity and specificity were 99.8% and 99.3% for the HBsAg test, 100.0% and 100.0% for the anti-HBs test, and 98.8% and 99.1% for the anti-HCV test, respectively. Its agreement rates with the Elecsys HBsAg, anti-HBs, and anti-HCV detection assays were 99.4%, 100.0%, and 99.0%, respectively. AFIAS detected all samples with HBsAg genotypes A-F and H and anti-HCV genotypes 1, 1a, 1b, 2a, 2b, 4, and 6. Cross-reactivity with other infections was not observed. Conclusions: The AFIAS HBsAg, anti-HBs, and anti-HCV tests demonstrated diagnostic performance equivalent to current automated CLIAs. AFIAS could be used for a large-scale HBV or HCV screening in low-resource laboratories or low-to middle-income areas.

Recent progress in aromatic radiofluorination

  • Kwon, Young-Do;Chun, Joong-Hyun
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.5 no.2
    • /
    • pp.145-151
    • /
    • 2019
  • Fluorine-18 is considered to be the radionuclide of choice for positron emission tomography (PET). Thus, the development of small molecule-based radiopharmaceuticals for use in diagnostic imaging relies heavily on efficient radiofluorination techniques. Until the early 2000s, diaryliodonium salts and aryliodonium ylides were widely employed as labeling precursors to yield aromatic PET radiotracers with cyclotron-produced [18F]fluoride ion. Rapid recent progress in the development of efficient borylation methods has led to a paradigm shift in 18F-labeling methods. In addition, deoxyfluorination has attracted a great deal of interest as an alternative approach to aryl ring activation with 18F-. In this review, methods for radiolabel development are discussed with a specific focus on the progress made in the last 5 years. Other interesting 18F-based protocols are also briefly introduced. New methods for exploiting 18F- are expected to increase the number of 18F-labeling methods, to allow applications in a range of chemical environments.

Molecular Approaches to Taenia asiatica

  • Jeon, Hyeong-Kyu;Eom, Keeseon S.
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Taenia solium, T. saginata, and T. asiatica are taeniid tapeworms that cause taeniasis in humans and cysticercosis in intermediate host animals. Taeniases remain an important public health concerns in the world. Molecular diagnostic methods using PCR assays have been developed for rapid and accurate detection of human infecting taeniid tapeworms, including the use of sequence-specific DNA probes, PCR-RFLP, and multiplex PCR. More recently, DNA diagnosis using PCR based on histopathological specimens such as 10% formalin-fixed paraffin-embedded and stained sections mounted on slides has been applied to cestode infections. The mitochondrial gene sequence is believed to be a very useful molecular marker for not only studying evolutionary relationships among distantly related taxa, but also for investigating the phylo-biogeography of closely related species. The complete sequence of the human Taenia tapeworms mitochondrial genomes were determined, and its organization and structure were compared to other human-tropic Taenia tapeworms for which complete mitochondrial sequence data were available. The multiplex PCR assay with the Ta4978F, Ts5058F, Tso7421F, and Rev7915 primers will be useful for differential diagnosis, molecular characterization, and epidemiological surveys of human Taenia tapeworms.

DNA diagnostic testing in hereditary motor and sensory neuropathies (유전성 운동 및 감각 신경병의 DNA 진단 검사)

  • Choi, Byung-Ok
    • Journal of Genetic Medicine
    • /
    • v.4 no.2
    • /
    • pp.115-121
    • /
    • 2007
  • Hereditary motor and sensory neuropathy (HMSN; Charcot-Marie-Tooth disease, CMT) was first described by Charcot and Marie in France and, independently, by Tooth in England in 1886. HMSN is the most common form of inherited motor and sensory neuropathy, and is a genetically heterogeneous disorder of the peripheral nervous system. Using positional cloning methods, the chromosomal localization (locus) of more than 40 inherited peripheral neuropathies was found in the last 15 years. However, these genetic analyses also show that many entities do not show linkage to the known loci. This issue deals with a clinical survey of inherited peripheral neuropathies regarding diagnostic approaches based on the molecular findings.

  • PDF