• Title/Summary/Keyword: Molecular control

Search Result 2,961, Processing Time 0.029 seconds

Curcumin: a Polyphenol with Molecular Targets for Cancer Control

  • Qadir, Muhammad Imran;Naqvi, Syeda Tahira Qousain;Muhammad, Syed Aun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.6
    • /
    • pp.2735-2739
    • /
    • 2016
  • Curcumin, is a polyphenol from Curcuma longa (turmeric plant), is a polyphenol that belongs to the ginger family which has long been used in Ayurveda medicines to treat various diseases such as asthma, anorexia, coughing, hepatic diseases, diabetes, heart diseases, wound healing and Alzheimer's. Various studies have shown that curcumin has anti-infectious, anti-inflammatory, anti-oxidant, hepatoprotective, thrombosuppressive, cardio protective, anti-arthritic, chemo preventive and anti-carcinogenic activities. It may suppress both initiation and progression stages of cancer. Anticancer activity of curcumin is due to negative regulation of inflammatory cytokines, transcription factors, protein kinases, reactive oxygen species (ROS) and oncogenes. This review focuses on the different targets of curcumin to treat cancer.

Molecular Prevalence and Genotypes of Cryptosporidium parvum and Giardia duodenalis in Patients with Acute Diarrhea in Korea, 2013-2016

  • Ma, Da-Won;Lee, Myoung-Ro;Hong, Sung-Hee;Cho, Shin-Hyeong;Lee, Sang-Eun
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.5
    • /
    • pp.531-536
    • /
    • 2019
  • Cryptosporidium parvum and Giardia duodenalis are the main diarrhea-causing parasitic pathogens; however, their prevalence in Korea is unknown. Here, we conducted a survey to determine the prevalence and genotype distribution of these 2 pathogens causing acute diarrhea in 8,571 patients hospitalized in 17 Regional Institute of Health Environment sites in Korea, during 2013-2016. C. parvum and G. duodenalis were detected and genotyped by nested PCR, and the isolate were molecularly characterized by sequencing the glycoprotein 60 (Gp60) and ${\beta}-giardin$ genes, respectively. The overall prevalence of C. parvum and G. duodenalis was 0.37% (n=32) and 0.55% (n=47), respectively, and both pathogens were more prevalent in children under 9 years old. Molecular epidemiological analysis showed that the C. parvum isolates belonged to the IIa family and were subtyped as IIaA13G2R1, IIaA14G2R1, IIaA15G2R1, and IIaA18G3R1. Analysis of the ${\beta}-giardin$ gene fragment from G. duodenalis showed that all positive strains belong to assemblage A. This is the first report on the molecular epidemiology and subtyping of C. parvum and G. duodenalis in such a large number of diarrheal patients in Korea. These results highlight the need for continuous monitoring of these zoonotic pathogens and provide a basis for implementing control and prevention strategies. Further, the results might be useful for epidemiological investigation of the source of outbreak.

Association between Cigarette Smoking and RASSF1A Gene Promoter Hypermethylation in Lung Cancer Patients: a Meta-analysis

  • Wu, Xiao-Ming;Chen, Yu;Shao, Yang;Zhou, Xiao-Long;Tang, Wen-Ru
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8451-8454
    • /
    • 2014
  • Objectives: Epidemiological studies have shown that molecular mechanisms underlying the development of lung cancers differ between smokers and unsmokers. Aberrant promoter methylation in some tumor suppressor genes is frequent in lung tumors from smokers but rare in those from non-smokers. Recently, many studies have investigated the association between cigarette smoking and RASSF1A gene promoter hypermethylation in lung cancer patients, but a unanimous conclusion could not be reached. We therefore performed this meta-analysis to derive a more precise estimation of any association. Study Design: An electronic search of PubMed and Chinese Biomedicine databases was conducted to select studies. A total of 19 case-control studies were chosen, and odds ratios (ORs) with confidence intervals (CIs) were used to assess the strength of associations. Results: The case-control studies covered 2, 287 lung cancer patients: 63.4%(1449) of the patients were smokers, 36.6% (838) were unsmokers. The overall results suggested that smokers with lung cancer had a 1.297-fold (95% CI: 1.066~1.580, p=0.010, p=0.087) higher risk for RASSF1A gene hypermethylation than the non-smokers. In the stratified analysis, an increased risk of RASSF1A gene hypermethylation in smokers than in non-smokers was found in Asian (OR=1.481, 95%CI: 1.179~1.861, p=0.001, p=0.186). Conclusions: This meta-analysis supports the idea that RASSF1A gene hypermethylation is associated with cigarette smoking-induced lung cancer.

Effect of Dissolved Oxygen Concentration and pH on the Mass Production of High Molecular Weight Pullulan by Aureobasidium pullulans

  • LEE, JI-HYUN;JEONG-HWA KIM;MI-RYUNG KIM;SUNG-MI LIM;SOO-WAN NAM;JIN-WOO LEE;SUNG-KOO KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • The effects of DO and pH on the mass production of pullulan with high molecular weight and the morphology of A. pullulans ATCC 42023 were evaluated. A. pullulans showed a maximum production of pullulan (11.98 g/l) when the initial pH of the culture broth was 6.5 in a shake-flask culture. In a batch culture, the mixture of a yeast-like and mycelial cell forms was found at a pH of 4.5, and the maximum production of pullulan (13.31 g/l) was obtained. However, a high proportion of high molecular weight pullulan (M.W.>2,000,000) was produced at a pH of 6.5, with a yeast-like morphology. The maximum pullulan production yield ($51\%$) was obtained at a pH noncontrol (initial pH 6.5) and DO control (above $50\%$) condition. Pullulan degrading enzyme was activated when the pH of the broth was lower than 5.0 and the portion of low molecular weight pullulan was increased. The formation of a black pigment was observed at an initial stationary phase, at 40 h of fermentation. Therefore, the fermentation should be carried out in a pH noncontrol (initial pH of 6.5) and DO control (above $50\%$) condition, and should be harvested before reaching the stationary phase (around 40 h) for the production of high molecular weight pullulan.

Molecular weight Control of Polyhydroxybutyrate (PHB) in Recombinant Escherichia coli (재조합 대장균에서의 Polyhydroxybutyrate (PHB)의 분자량 조절)

  • 심상준;안토니신스키
    • KSBB Journal
    • /
    • v.13 no.1
    • /
    • pp.96-100
    • /
    • 1998
  • Two promoters (trc and P$\rho$) were inserted in PHA operon derived from Alcaligenes eutrophus to obtain high chain molecules of polyhydroxybutyrate (PHB) in recombinant Escherichia coli. Newly designed PHA operon was used to control the gene expressions of hydroxybutyric CoA and PHA polymerization, separately. Plasmids containing new synthetic operon was transformed into E. coli DH5$\alpha$ and analyzed for PHB production. Without induction of the PHA biosynthetic operon, PHA synthase which has low activity might supply low concentration of initiator during the polymerization reaction, resulting very high molecular weight of polymer. An increase of PHB average molecular weight was observed with decreased IPTG (isopropyl $\beta$ -Dithiogalactosidase) concentration. When no IPTG was added to the culture of E. coli DH5$\alpha$ /$\rho$ SJS1 which contained two promoters in PHA operon, high chain polymer having an average molecular weight of $2.5{\times}10^7$ was achieved. Analysis of the enzyme activities of PHA biosynthetic enzymes suggests that PHA synthase, the enzyme responsible for polymerizing 3-hydroxybutyric CoA, controls the molecular weight of PHB produced in vivo.

  • PDF

고분자량의 pullulan 생산을 위한 발효공정의 최적화

  • Kim, Seong-Gu;Lee, Ji-Hyeon;Kim, Jeong-Hwa;Kim, Mi-Ryeong;Lee, Jin-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.45-50
    • /
    • 2000
  • For the maximum production of pullulan from glucose as a carbon source, the effects of glucose concentration, pH and dissolved oxygen concentration on the cell growth and mass production of high-molecular weight pullulan by A. pullulans ATCC 42023 were evaluated. A. pullulans showed optimum pullulan productivity when glucose concentration was 0.3M (54g/L). And inhibitory effects on the cell growth and the pullulan production were observed at the glucose concentration higher than 0.3M (54g/L). The influence of pH control and dissolved oxygen on the pullulan production and growth of A. pullulans was studied. In shake-flasks, maximum pullulan production was obtained with $11.98g/{\ell}$ when initial pH was 6.5. In the batch fermentation, the maximum pullulan production of $13.31g/{\ell}$ was obtained with constant pH 4.5. And it was found that pullulan yield and synthesis rate increased with oxygen availability. For the production of commercially useful pullulan with high-molecular weight, a mixed carbon source, which was a mixture of glucose and glucosamine, was used for the pullulan fermentation with A. pullulans. On the basis of 5% mixed carbon source, culture with 3% glucosamine with 2% glucose was optimum condition for the production of high (M.W.> 1,000,000) and medium (M.W.> 200,000) molecular weight pullulan with considerable yields of cell mass and product. And the influence of pH control on the molecular weight of pullulan was studied in batch fermentation. It was found that the productivity of high-molecular weight pullulan with pH control at 6.5 was higher than that with no pH control.

  • PDF

A Study on The Effect of Molecular Movement Model Based Instruction on High School Students' Conceptions of diffusion and Osmosis (확산과 삼투 분자운동 모형을 활용한 수업의 개념변화에의 효과)

  • Cho, Jung-Il;Lee, Hyung-Uk
    • Journal of The Korean Association For Science Education
    • /
    • v.14 no.3
    • /
    • pp.293-303
    • /
    • 1994
  • The purpose of this study was to find the effect of molecular movement model based instruction on high school students' conceptions of diffusion and osmosis. The study was composed of two groups, the traditional instruction group in which the so-called traditional instruction was performed, and the other group in which interventions by researchers were made. The subjects of the traditional instruction group consisted of a total of 242 high school students from Seoul, Gwangju and Mokpo. The subjects of the model based instruction group consisted of 177 first-year high school students in Mokpo. The study was focused on the use of the term of 'molecular movement' in their explanation of diffusion and osmosis in the correct contexts. In general, students who got the molecular movement model based instruction showed more frequent use of the terms of 'molecular movement' in the correct contexts than the control group students did. It was found that misconceptions including teleological explanations changed into scientific explanations by the intervention. It seemed that the molecular movement model led students to make scientific explanations on natural phenomena. A further research is recommended to assess the improvement of teleological explanation and scientific attitude by the molecular movement model.

  • PDF

Channel Capacity Analysis of DNA-based Molecular Communication with Length Encoding Mechanism

  • Xie, Jialin;Liu, Qiang;Yang, Kun;Lin, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.2923-2943
    • /
    • 2021
  • The double helix structure of DNA makes it diverse, stable and can store information with high density, and these characteristics are consistent with the requirements of molecular communication for transport carriers. In this paper, a specific structure of molecular communication system based on DNA length coding is proposed. Transmitter (Tx) adopts the multi-layer golden foil design to control the release of DNA molecules of different lengths accurately, and receiver (Rx) adopts an effective and sensitive design of nanopore, and the biological information can be converted to the electric signal at Rx. The effect of some key factors, e.g., the length of time slot, transmission distance, the number of releasing molecules, the priori probability, on channel capacity is demonstrated exhaustively. Moreover, we also compare the transmission capacity of DNA-based molecular communication (DNA-MC) system and concentration-based molecular communication (MC) system under the same parameter setting, and the peak value of capacity of DNA-MC system can achieve 0.08 bps, while the capacity of MC system remains 0.025 bps. The simulation results show that DNA-MC system has obvious advantages over MC system in saving molecular resources and improving transmission stability.

Hepatitis B virus X protein enhances liver cancer cell migration by regulating calmodulin-associated actin polymerization

  • Kim, Mi-jee;Kim, Jinchul;Im, Jin-su;Kang, Inho;Ahn, Jeong Keun
    • BMB Reports
    • /
    • v.54 no.12
    • /
    • pp.614-619
    • /
    • 2021
  • Hepatitis B virus (HBV) infection is a major cause of hepatocellular carcinoma (HCC), which is a highly aggressive cancer. HBV X protein (HBx), one of four HBV gene products, plays pivotal roles in the development and metastasis of HCC. It has been reported that HBx induces liver cancer cell migration and reorganizes actin cytoskeleton, however the molecular basis for actin cytoskeleton reorganization remains obscure. In this study, we for the first time report that HBx promotes actin polymerization and liver cancer cell migration by regulating calcium modulated protein, calmodulin (CaM). HBx physically interacts with CaM to control the level of phosphorylated cofilin, an actin depolymerizing factor. Mechanistically, HBx interacts with CaM, liberates Hsp90 from its inhibitory partner CaM, and increases the activity of Hsp90, thus activating LIMK1/cofilin pathway. Interestingly, the interaction between HBx and CaM is calcium-dependent and requires the CaM binding motif on HBx. These results indicate that HBx modulates CaM which plays a regulatory role in Hsp90/LIMK1/cofilin pathway of actin reorganization, suggesting a new mechanism of HBV-induced HCC metastasis specifically derived by HBx.

The Effect of Low Molecular Weight Chitosans on the Characteristics of Kimchi during Fermentation (저분자 chitosan이 배추김치 모델시스템의 보존성에 미치는 영향)

  • Kim, Kwang-Ok;Moon, Hyung-Ah;Jeon, Dong-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.420-427
    • /
    • 1995
  • This study was conducted to investigate the preservative effect of low molecular weight chitosans on kimchi(2% salt concentration) during fermentation at $20^{\circ}C$. The pH and total acidity of control kimchi were lower and higher, respectively than those of kimchi samples containing chitosan. Reducing sugar content tended to be lower in control kimchi than in kimchi samples containing chitosan until 6 days of fermentation. Malic acid content was lower in control kimchi than in kimchi samples containing chitosan until 4 days of fermentation. Succinic acid content was higher in control kimchi than in kimchi samples containing chitosan at the 2 days of fermentation. Content of lactic and acetic acid also was higher in control kimchi than in kimchi samples containing chitosan at the 4 days of fermentation. The number of total microorganisms and those of microorganisms of Leuconostoc genus and Lactobacillus plantarum were higher in control kimchi than in kimchi samples containing chitosan. The number of microorganisms of Leuconostoc genus was lower in kimchi samples containing chitosan with the lower molecular weight chitosan than those with the higher molecular weight chitosan. Intensity of sensory sour taste and staled flavor were higher in control kimchi than in kimchi samples containing chitosan. There was not much difference in sensory firmness among kimchi samples, but control kimchi was evaluated slightly weaker than kimchi samples containing chitosan. Off-flavor was evaluated as weak in all the kimchi samples.

  • PDF