• 제목/요약/키워드: Molecular cleft

검색결과 24건 처리시간 0.024초

Malondialdehyde Levels in Middle Ear Fluid from Patients of Otitis Media with Effusion

  • Mun, Kyo-Cheol;Kim, Deok-Jun
    • BMB Reports
    • /
    • 제32권1호
    • /
    • pp.25-27
    • /
    • 1999
  • Otitis media with effusion (OME) is an inflammatory disease of the middle ear cleft. Oxygen free radicals have been implicated in a variety of inflammatory disorders. Oxygen free radicals may also be involved in the pathogenesis of OME. To evaluate the involvement of oxygen free radicals in the pathogenesis of OME, the level of malondialdehyde, which gives an index of lipid peroxidation by oxygen free radicals, was measured by the reaction with thiobarbituric acid. Malondialdehyde level in the middle ear fluid from the OME group was higher than that in the normal control group. Malondialdehyde level in the middle ear fluid from a mucoid subgroup was higher than that in the serous subgroup. Malondialdehyde levels in the middle ear fluid from the serous subgroup was significantly correlated with symptom duration. The Pearson correlation coefficient between malondialdehyde levels in the middle ear fluid from the serous subgroup and symptom duration was 0.842 (P<0.05). These results indicate that lipid peroxidation by oxygen free radicals may be involved in the pathogenesis of human OME.

  • PDF

Preparation of Dopamine Transporter-specific Antibodies Using Molecular Cloned Genes

  • Lee, Shee-Yong;Im, Suhn-Young;Kim, Kyeong-Man
    • Archives of Pharmacal Research
    • /
    • 제22권3호
    • /
    • pp.262-266
    • /
    • 1999
  • Dopamine transporter (DAT) plays the most important role in terminating the actions of dopamines released into the synaptic cleft. DAT is also the target of various psychotropic drugs such as cocaine and amphetamine. In this study were prepared DAT-specific antibodies using the 2nd extracellular loop of rat DAT as an antigen. The 2nd extracellular loop of the rat DAT was expressed in bacterial as a fusion protein with glutathione-S-transferase, and injected ito rabbits to raise antibodies. Produced antibodies clearly recognized the rat DAT in ELISA, immunoblotting, and immumoprecipitation. As expected from the high sequence homology between the rat and human DAT, the antibodies raised for the rat DAT cross-reacted with the human DAT in the immunoblotting. Considering the specificity for DAT with wide range of applications such as ELISA, immunoblotting, and immunoprecipitation, these antibodies would be valuable tool for understanding the pharmacological actions of dopamine transporter and drug addition.

  • PDF

Roles of GASP-1 and GDF-11 in Dental and Craniofacial Development

  • Lee, Yun-Sil;Lee, Se-Jin
    • Journal of Oral Medicine and Pain
    • /
    • 제40권3호
    • /
    • pp.110-114
    • /
    • 2015
  • Purpose: Growth and differentiation factor (GDF)-11 is a transforming growth factor-${\beta}$ family member that plays important regulatory roles in development of multiple tissues which include axial skeletal patterning, palatal closure, and tooth formation. Proteins that have been identified as GDF-11 inhibitors include GDF-associated serum protein (GASP)-1 and GASP-2. Recently, we found that mice genetically engineered to lack both Gasp1 and Gdf11 have an increased frequency of cleft palate. The goal of this study was to investigate the roles of GDF-11 and its inhibitors, GASP-1 and GASP-2, during dental and craniofacial development and growth. Methods: Mouse genetic studies were used in this study. Homozygous knockout mice for Gasp1 ($Gasp1^{-/-}$) and Gasp2 ($Gasp2^{-/-}$) were viable and fertile, but Gdf11 homozygous knockout ($Gdf11^{-/-}$) mice died within 24 hours after birth. The effect of either Gasp1 or Gasp2 deletion in $Gdf11^{-/-}$ mice during embryogenesis was evaluated in $Gasp1^{-/-}$;$Gdf11^{-/-}$ and $Gasp2^{-/-}$;$Gdf11^{-/-}$ mouse embryos at 18.5 days post-coitum (E18.5). For the analysis of adult tissues, we used $Gasp1^{-/-}$;$Gdf11^{+/-}$ and $Gasp2^{-/-}$;$Gdf11^{+/-}$ mice to evaluate the potential haploinsufficiency of Gdf11 in $Gasp1^{-/-}$ and $Gasp2^{-/-}$ mice. Results: Although Gasp2 expression decreased after E10.5, Gasp1 expression was readily detected in various ectodermal tissues at E17.5, including hair follicles, epithelium in nasal cavity, retina, and developing tooth buds. Interestingly, $Gasp1^{-/-}$;$Gdf11^{-/-}$ mice had abnormal formation of lower incisors: tooth buds for lower incisors were under-developed or missing. Although $Gdf11^{+/-}$ mice were viable and had mild transformations of the axial skeleton, no specific defects in the craniofacial development have been observed in $Gdf11^{+/-}$ mice. However, loss of Gasp1 in $Gdf11^{+/-}$ mice occasionally resulted in small and abnormally shaped auricles. Conclusions: These findings suggest that both GASP-1 and GDF-11 play important roles in dental and craniofacial development both during embryogenesis and in adult tissues.

Nucleotide Sequence, Structural Investigation and Homology Modeling Studies of a Ca2+-independent α-amylase with Acidic pH-profile

  • Sajedi, Reza Hassan;Taghdir, Majid;Naderi-Manesh, Hossein;Khajeh, Khosro;Ranjbar, Bijan
    • BMB Reports
    • /
    • 제40권3호
    • /
    • pp.315-324
    • /
    • 2007
  • The novel $\alpha$-amylase purified from locally isolated strain, Bacillus sp. KR-8104, (KRA) (Enzyme Microb Technol; 2005; 36: 666-671) is active in a wide range of pH. The enzyme maximum activity is at pH 4.0 and it retains 90% of activity at pH 3.5. The irreversible thermoinactivation patterns of KRA and the enzyme activity are not changed in the presence and absence of $Ca^{2+}$ and EDTA. Therefore, KRA acts as a $Ca^{2+}$-independent enzyme. Based on circular dichroism (CD) data from thermal unfolding of the enzyme recorded at 222 nm, addition of $Ca^{2+}$ and EDTA similar to its irreversible thermoinactivation, does not influence the thermal denaturation of the enzyme and its Tm. The amino acid sequence of KRA was obtained from the nucleotide sequencing of PCR products of encoding gene. The deduced amino acid sequence of the enzyme revealed a very high sequence homology to Bacillus amyloliquefaciens (BAA) (85% identity, 90% similarity) and Bacillus licheniformis $\alpha$-amylases (BLA) (81% identity, 88% similarity). To elucidate and understand these characteristics of the $\alpha$-amylase, a model of 3D structure of KRA was constructed using the crystal structure of the mutant of BLA as the platform and refined with a molecular dynamics (MD) simulation program. Interestingly enough, there is only one amino acid substitution for KRA in comparison with BLA and BAA in the region involved in the calcium-binding sites. On the other hand, there are many amino acid differences between BLA and KRA at the interface of A and B domains and around the metal triad and active site area. These alterations could have a role in stabilizing the native structure of the loop in the active site cleft and maintenance and stabilization of the putative metal triad-binding site. The amino acid differences at the active site cleft and around the catalytic residues might affect their pKa values and consequently shift its pH profile. In addition, the intrinsic fluorescence intensity of the enzyme at 350 nm does not show considerable change at pH 3.5-7.0.

보툴리눔 독소의 약리 (The Pharmacology of Botulinum Toxin)

  • 이상혁;이현섭;진성민
    • 대한후두음성언어의학회지
    • /
    • 제23권2호
    • /
    • pp.93-98
    • /
    • 2012
  • Botulinum toxins are the most potent toxins known to mankind. Botulinum toxin acts by blocking the cholinergic neuromuscular or the cholinergic autonomic innervation of exocrine glands and smooth muscles. Seven distinct antigenic botulinum toxins (A, B, C, D, E, F and G) produced by different strains of Clostridium botulinum have been described and only A and B type of botulinum toxins were clinically used. Toxins were consisted of a heavy chain with a molecular weight of 100 kD and a light chain with a molecular weight of 50 kD. Toxins are bound with an astounding selectivity to glycoprotein structures located on the cholinergic nerve terminal. Subsequently light chain of toxin is internalized and cleaves different proteins of the acetylcholine transport protein cascade transporting the acetylcholine vesicle from the intracellular space into the synaptic cleft. After a decade of therapeutic application of the toxin, no anaphylaxis or deaths have been reported and systemic adverse effects have not been reported so far. However the toxin's immunologic properties can lead to the stimulation of antibody production, potentially rendering further treatments ineffective. Botulinum toxin is a safe and effective treatment. Use of botulinum toxin in clinical medicine has grown exponentially in recent years, and many parts of the human body are now being targeted for therapeutic purposes.

  • PDF

No Association of XRCC1 and CLPTM1L Polymorphisms with Non-small Cell Lung Cancer in a Non-Smoking Han Chinese Population

  • Sun, Yan;Zhang, Yong-Jun;Kong, Xiang-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권9호
    • /
    • pp.5171-5174
    • /
    • 2013
  • Background: This study aimed to explore potential associations between single nucleotide polymorphisms (SNPs) of the x-ray repair cross-complementing group 1 (XRCC1) and cleft lip and palate transmembrane protein 1-like (CLPTM1L) and non-small cell lung cancer (NSCLC) susceptibility in non-smoker Chinese patients. Methods: A total of 200 NSCLC patients and 200 healthy controls with matched age and gender were recruited for genotyping of XRCC1 SNPs (rs2256507 and rs1001581) and CLPTM1L SNPs (rs401681 and rs4975616). Association of these SNPs with NSCLC risk was evaluated by computing the odds ratio (OR) and 95% confidence interval (CI) from multivariate unconditional logistic regression analyses with adjustment for gender and age. Results: The frequencies of genotype and allele in these four loci (rs2256507, rs1001581, rs401681, and rs4975616) were not significantly different between the cases and controls, or between either of the histological subgroups (adenocarcinoma and squamous cell carcinoma) and controls. Conclusions: Although these SNPs are associated with NSCLC risk in patients with a tobacco-smoking habit, this study demonstrated that XRCC1 and CLPTM1L gene SPNs are not linked with NSCLC risk in non-smoking patients, indicating that molecular mechanisms of NSCLC betwee tobacco smokers and non-smokers may be different. Future studies are needed to uncover the underlying molecular mechanisms for NSCLC in non-smokers.

Effects of ${\gamma}$-Irradiation on Immunological Activities of ${\beta}$-Glucan

  • Kim, Jae-Hun;Sung, Nak-Yun;Byun, Eui-Hong;Kwon, Sun-Kyu;Song, Beom-Seok;Choi, Jong-Il;Yoon, Yohan;Kim, Jin-Kyu;Byun, Myung-Woo;Lee, Ju-Woon
    • Food Science and Biotechnology
    • /
    • 제18권5호
    • /
    • pp.1305-1309
    • /
    • 2009
  • This study evaluated the effects of $\gamma$-irradiation on immunomodulating properties and structural changes of ${\beta}$-glucan. ${\beta}$-Glucan solutions (10 mg/mL) were ${\gamma}$-irradiated at 10, 30, and 50 kGy. Splenocyte proliferation and cytokine (interferon-${\gamma}$ and interlukin-2) productions by ${\gamma}$-irradiated ${\beta}$-glucan were evaluated in in vivo and in vitro, and structural changes of ${\beta}$-glucan were also determined after ${\gamma}$-irradiation. ${\gamma}$-Irradiation on ${\beta}$-glucan at 50 kGy enhanced splenocyte proliferation and cytokine productions, (p<0.05) and cleft glycosidic bonds of ${\beta}$-glucan resulting in lower the molecular weight. These results indicate that the use of ${\gamma}$-irradiation on ${\beta}$-glucan may be useful for improving its immunological activity by lowering the molecular weight of ${\beta}$-glucan.

한국인 스미스-렘리-오피츠 증후군 환자의 임상 양상 및 유전자형: 새로운 증례 보고 및 문헌 고찰 (Clinical and Molecular Genetic Characteristics of Korean Patients with Smith-Lemli-Opitz Syndrome: A Report of New Patients with a Literature Review)

  • 고정민
    • 대한유전성대사질환학회지
    • /
    • 제14권1호
    • /
    • pp.48-53
    • /
    • 2014
  • Smith-Lemli-Opitz syndrome (SLO) is a rare, autosomal recessive disease caused by an inborn error in cholesterol synthesis. Patients with this disease suffer from multiple malformations due to reduced activity of 7-dehydrocholesterol reductase (DHCR7), which increases 7-dehydrocholesterol (7DHC) and 8-dehydrocholesterol (8DHC) concentrations and decreases cholesterol concentration in body fluids and tissue. Here, we describe Korean siblings with SLO who were diagnosed recently, and performed a review of literature about Korean cases with SLO to date. Microcephaly and syndactyly of the second and third toes are the most common physical finding in SLOS patients. Other malformations including growth failure, cleft palate or bifid uvula, various heart malformation, genital ambiguity in males are also accompanied. Not all patients showed low levels of serum cholesterol, so DHCR7 mutation analysis can be helpful to confirmative diagnosis. Two mutations on p.R352 locus (p.R352W and p.R352Q) are commonly identified in Korean SLO patients. Although rare in Korea, SLO should be considered in the differential diagnosis of growth failure with intellectual disability, especially in patients with multiple congenital anomalies.

Crystal Structure and Molecular Mechanism of Phosphotransbutyrylase from Clostridium acetobutylicum

  • Kim, Sangwoo;Kim, Kyung-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권10호
    • /
    • pp.1393-1400
    • /
    • 2021
  • Acetone-butanol-ethanol (ABE) fermentation by the anaerobic bacterium Clostridium acetobutylicum has been considered a promising process of industrial biofuel production. Phosphotransbutyrylase (phosphate butyryltransferase, PTB) plays a crucial role in butyrate metabolism by catalyzing the reversible conversion of butyryl-CoA into butyryl phosphate. Here, we report the crystal structure of PTB from the Clostridial host for ABE fermentation, C. acetobutylicum, (CaPTB) at a 2.9 Å resolution. The overall structure of the CaPTB monomer is quite similar to those of other acyltransferases, with some regional structural differences. The monomeric structure of CaPTB consists of two distinct domains, the N- and C-terminal domains. The active site cleft was formed at the interface between the two domains. Interestingly, the crystal structure of CaPTB contained eight molecules per asymmetric unit, forming an octamer, and the size-exclusion chromatography experiment also suggested that the enzyme exists as an octamer in solution. The structural analysis of CaPTB identifies the substrate binding mode of the enzyme and comparisons with other acyltransferase structures lead us to speculate that the enzyme undergoes a conformational change upon binding of its substrate.