본 연구는 Si (111) 기판위에 Ga 분자선량을 변화시켜 GaN 박막을 molecular beam epitaxy 법으로 성장하고, Schottky 장벽 다이오드를 제작한 후에 deep level transient spectroscopy (DLTS) 법을 통하여 깊은 준위 결함에 대하여 조사하였다. 성장 시 Ga 분자선량은, 그리고 Torr로 달리하여 V/III 비율을 변화시켰고, Schottky 장벽 다이오드 제작을 위하여 e-beam evaporator를 사용하여 metal을 증착하였다. Schottky 접촉에는 Ni (20 nm)/Au (100 nm)를 증착하였고, ohmic 접촉에는 Ti (20 nm)/Au (100 nm)를 증착하고 I-V, C-V 그리고 DLTS를 측정하였다. DLTS 신호를 통해 GaN 박막 성장 과정에서 형성되는 깊은 결함의 종류를 확인하였으며, 열처리 등의 처리 및 측정 조건변화에 따른 결함의 거동과 종류 및 원인에 대하여 분석 설명하였다.
분자선속 방법으로 실리콘 기판위에 GaAs의 에피층을 생장하고, 이를 분석한 결과를 보고한다. 두 종류의 실리콘 기판에 생장 조건을 다르게 한 시료를 준비하고, SEM, TEM, X-ray회절, PL, Hall 등의 방법으로 분석하였다. 결정면에서 약간 기울여 절삭한 기판에 이단계 성장법으로 성장한 에피층이 보다 좋은 결정 구조를 갖으며, multi-quantum well buffer layer를 삽입하는 것이 stress 해소 등에 도움이 된다. 또 GaAs 에피층은 저절로 실리콘으로 doping이 되는데, exciton bound 에너지 준위를 통한 radiative recombination은 homoepitaxial GaAs 에피층보다 잘 일어나지 않는 것으로 관측되었다.
Molecular beam epitaxy(MBE)로 성장시킨 $Al_{0.24}Ga$$_{0.76}As/GaAs$ 에피층 구조의 표면 광전압을 측정하였다. 측정된 신호로부터 구한 $Al_{0.24}Ga$$_{0.76} As/GaAs$ 에피층, GaAs 기판 그리고 GaAs 완충층의 밴드갭 에너지는 각각 1.72, 1.40 그리고 1.42 eV이다. 이는 phoareflectance(PR) 측정 결과와 잘 일치하였다 그리고 $Al_{0.24}Ga$_{0.76} As/GaAs$ 에피층이 GaAs기판의 표면 광전압세기 보다 약 3배 정도 작게 나타났는데 이는 캐리어의 이동도 차이로 나타나는 현상으로 해석된다. 또한 표면 광전압의 온도 의존성으로부터 Varshni 식의 계수들을 구하였다.
I $n_{0.53}$G $a_{0.47}$As/I $n_{0.52}$A $l_{0.48}$As pseudomorphic high electron mobility transistor (P-HEMT) structures were grown on semi-insulating InP substrates by molecular beam epitzxy method. The hall effect measuremetn was used to measure the electrical properties and the photoluminescence (PL) measurement was used to measure the electrical properties and the photoluminescence(PL) measurement for optical propety. By the cross-sectional transmission electron microscopy (XTEM) investigation of the V and X shape defects including slip with angle of 60.deg. C and 120.deg. C to surface in the sampel, the defects formation mecahnism in the I $n_{0.52}$A $l_{0.48}$As epilayers on InP substrates could be explained with the different thermal expansion coefficients between I $n_{0.52}$A $l_{0.48}$As epilayers and InP substrate.d InP substrate.
분자선증착기 (Molecular beam epitaxy. MBE)를 이용하여 InP (001) 기판에 자발형성 (Self-assembled) InAs/InAlAs, InAs/InAlGaAs 양자점 (quantum dots, QDs)을 형성하고 구조 및 광학적 특성을 원자력간현미경(Atomic force microscopy, AFM), 투과전자현미경 (Transmission electron microscopy, TEM), 상온 포토루미네슨스 (Photoluminescence, PL) 실험을 통하여 분석하였다. AFM 측정을 통해 표면 형태를 분석한 결과 InAs 양자구조는 기저물질의 표면상태에 따라 양자대쉬, 비대칭적인 형태를 갖는 양자점, 대칭적인 형태를 갖는 양자점과 같이 다양하게 성장되었다. InAlGaAs 물질을 장벽층으로 하는 InAs 양자점의 평균크기는 폭이 대략 23 nm, 높이가 약 2 nm 이었다. 성장조건을 다양하게 변화시켜 광통신시스템에 중요한 파장중의 하나인 $1.55{\mu}m$ 발광파장을 갖는 InAs 양자점을 형성하였다.
분자선 에퍼택시 (MBE)방법을 이용하여 (100) GaAs웨이퍼 위에 GaAs에퍼충을 성장시켜 성장된 충에 대한 여러가지 특성을 조사 ·분석하였다. 분자선 에피택시 방법을 이용하여 CaAs에퍼층을 만들 때에는 기판온도와 As와 Ca의 분자선 밀도비 (As/Ga)가 가장 큰 영향을 미친다. 본 실험에서는 좋은 표면상태를 얻기 위해 480℃∼650℃로 유지시키고 As cell의 온도를 230℃, Ga eel함 온도를 917℃로 고정시켜 As와 Ga의 분자선 밀도비를 5∼10 이상으로 유지시켰다. 제작된 GaAs에피층의 표면상태를 SIMS (Seconde,y ion Mass ipectoscopy), AES(Auger Electron Spectroscopy) , SEM (Scanning Elect.on Mic,oscopy) , RHEED (Reflection High Energy Electron Diffraction) 등으로 조사한 결과 기판온도가 540℃일 때 가장 좋은 표면상태를 얻을 수 있었다. 또한 RH-EED관찰 결과 As 안정화된 표면을 관측할 수 있었으며 SIMS로 depth-Profile을 해 본 곁과, Ca 보다 As가 불안정함을 알았다. 또한 반선 회절 검사결과에서 기판온도가 520℃일때와 540℃일때 (400), (200)면에 단결정이 형성되었음을 알 수 있었다.
1차원구속 반도체인 nanowires (NWs)는 전기적, 광학적으로 일반 bulk구조와 다른 특성을 가지고 있어서 현재 많은 연구가 되고 있다. 일반적으로 NWs는 Au 등의 금속 촉매를 이용하여 성장을 하게 되는데 이때 촉매가 오염물로 작용을 해서 결함을 만들어서 bandgap내에 defect level을 형성하게 된다. 본 연구는 Si (111) 기판 위에 GaAs NWs 와 InAs NWs를 촉매를 이용하지 않고 성장 하였다. vapour-liquid-solid (VLS)방법으로 성장하는 GaAs NWs는 Ga의 droplet을 이용하게 되는데 Ga이 Si 기판위에 자연 산화막에 존재하는 핀홀(pinhole)로 이동하여 1차적으로 Ga droplet 형성하고 이후 공급되는 Ga과 As은 SiO2 보다 GaAs와 sticking coefficient 가 좋기 때문에 Ga drolept을 중심으로 빠른 선택적 성장을 하게 되면서 NWs로 성장을 하게 된다. 반면에 InAs NWs를 성장 할 시에 droplet 방법으로 성장을 하게 되면 NWs가 아닌 박막 형태로 성장을 하게 되는데 이것으로 InAs과 GaAs의 $SiO_2$와의 sticking coefficient 의 차이를 추측을 할 수 있다. InAs NWs는 GaAs NWs는 달리 native oxide를 이용하지 않고 InAs 과 Si 사이의 11.5%의 큰 lattice mismatch를 이용한다. 이종의 epitaxy 방법에는 크게 3종류 (Frank-van der Merwe mode, Stranski-Krastanov mode, Volmer-Weber mode)가 있는데 각기 다른 adatom 과 surface의 adhesive force로 나누어지게 된다. 이 중 Volmer-Weber mode epitaxy는 adatom 의 cohesive force가 surface와의 adhesive force보다 큰 경우 성장 되는 방식으로 InAs NWs 는 이 방식을 이용한다. 즉 droplet을 이용하지 않는 vapour-solid (VS) 방법으로 성장을 하였다. 이 때 In 의 migration을 억제하기 위해서 VLS mode 의 GaAs NWs 보다 As의 공급을 10배 이상 하였다. FE-SEM 분석 결과 GaAs NWs는 Ga droplet을 확인 할 수 있었고 InAs NWs는 droplet이 존재하지 않았다. GaAs와 InAs NW는 density와 length가 V/III가 높을수록 증가 하였다.
반도체 양자링은 양자점과 같이 효율이 높은 광학 소자 및 전자 소자에 응용 가능할 뿐 아니라, 양자점과는 다른 흥미로운 현상 연구가 가능하기 때문에 지속적으로 연구되고 있는 양자 구조이다. 특히, 반도체 양자링은 다양한 양자 구조를 형성하기 위한 기초 구조로 사용될 수 있으므로, 반도체 양자링 구조의 형성 메카니즘을 연구하는 것 또한 중요하다. 본 연구에서는 Molecular Beam Epitaxy (MBE)를 이용하여 N-type (100) GaAs 기판 위에 GaAs 양자 구조를 형성하였다. As4 분압의 영향, 즉 3-5 ratio가 표면 양자 구조 변화에 미치는 영향을 관찰하기 위해 3족과 5족을 분리하여 성장하는 전형적인 성장 방식인, droplet epitaxy mode를 사용하였다. 성장 온도, Ga metal droplet 밀도 등의 조건을 고정하고 Arsenic 분압을 1e-5 torr부터 3e-8 torr로 감소시켰을 때 표면 이미지를 AFM과 SEM으로 관찰하였다. As4 분압이 1e-5 torr일 때 양자점의 표면 형상을 보여주다가 As4 분압을 줄여갈수록 양자점의 크기가 증가하면서 As4 분압 1e-6 torr에서는 SEM 이미지 상으로도 분명한 양자링을 관찰할 수 있었다. 특히 주목할 것은 As4 분압 1e-6 torr에서 더 줄여갈수록 양자링 중앙 부분의 낮은 부분이 점점 넓어졌다는 점이다. 이것은 As4 분압 1e-6 torr 이상의 조건이 As4와 Ga atom이 결합하여 GaAs 양자점을 형성하는데 적절한 3-5 ratio의 조건인 반면, 그보다 적은 As4 분압에서는 As4와 결합하지 못한 Ga atom의 표면 migration에 의한 driving force로 인해 양자링이 형성되었다고 추측할 수 있다. 이렇게 형성된 양자링을 열처리 후 macro-PL 측정을 통해 광학적 특성을 보고자 하였다. 그 결과 같은 조건에서 열처리되어 PL 측정한 양자점의 에너지에 비해 peak position이 blue shift한 것을 볼 수 있었다. 이것은 As4를 제외한 같은 조건에서 성장된 양자 구조에서 양자링의 경우 양자점에 비해 그 높이가 낮음을 추측해 볼 수 있다. 양자 구조의 모양과 광학 특성의 관계를 밝히기 위해 추후 추가 측정 및 분석이 필요할 것이다.
Due to their novel properties, GaN based semiconductors and their nanostructures are promising components in a wide range of nanoscale device applications. In this work, the gallium nitride is deposited on c-axis oriented sapphire and porous SWCNT substrates by molecular beam epitaxy using a novel single source precursor of $Me_2Ga(N_3)NH_2C(CH_3)_3$ with ammonia as an additional source of nitrogen. The advantage of using a single molecular precursor is possible deposition at low substrate temperature with good crystal quality. The deposition is carried out in a substrate temperature range of 600-750$^{\circ}C$. The microstructural, structural, and optical properties of the samples were analyzed by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and photoluminescence. The results show that substrate oriented columnar-like morphology is obtained on the sapphire substrate while sword-like GaN nanorods are obtained on porous SWCNT substrates with rough facets. The crystallinity and surface morphology of the deposited GaN were influenced significantly by deposition temperature and the nature of the substrate used. The growth mechanism of GaN on sapphire as well as porous SWCNT substrates is discussed briefly.
비정질 $Si_{1-x}Ge_{x}$(X=0, 0.14, 0.34, 0.53)합금박막의 결정화거동을 X-ray diffractometry(XRD)와 투과전자현미경(transmission electron microscopy, TEM)을 이용하여 조사하였다. 비정질 박막은 열산화막(thermal oxide, $SiO_{2}$)이 입혀진 Si기판위에 MBE(Molecular Beam Epitaxy)를 이용하여 $300^{\circ}C$에서 증착하였으며 각 Ge조성에 해당하는 기편들을 $500^{\circ}C$ ~ $625^{\circ}C$에서 열처리한 다음 XRD를 이용하여 결정화분율과 결정화후 박막의 우선순방위(texture)경향ㅇ르 조사하였다. 또한 TEM을 사용하여 열처리한 박막의 미세구조를 분석하였다. XRD분석결과 박막내의 Ge함량의 증가는 결정화에 대한 열처리시간을 크게 감소시키는 것으로 밝혀졌다. 또한 결정화후 강한(111) 우선방위를 나타내는 Si박막과는 달리 $Si_{1-x}Ge_{x}$합금은 (311)우선방위를 가지는 것을 알았으며 이는 비정질 Si박막과 $Si_{1-x}Ge_{x}$박막의 결정화기구에 현저한 차이가 있음을 암시한다. TEM관찰에서, 순수한 Si박막은 결정화후 결정립이 타원형이나 수지상(dendrite)형태를 취하고 있었으며 결정립내부에 미페쌍정이나 적층결함들의 많은 결정결함들이 존재하고, 결정립의 성장이 이들 결함을 따라 우선적으로 성장함을 알 수 있었다. 반면에 $Si_{0.47}Ge_{0.53}$의 경우에서는 결정립모양이 원형에 가까운 동축정(dquiaxed)형상을 하며 결정립내부의 결함밀도도 매우 낮았다. 특히 Si에서 보았던 결정립성장의 방향성은 관찰되지 않았다. 이상의 결과에서 비정질 $Si_{1-x}Ge_{x}$(합금박막의 결정화는 Ge이 포함되지 않은 순수한 Si의 twin assisted growth mode에서 Ge 함량의 증가에 따라 \ulcorner향성이 없는 random growth mode로 전개되어간다고 결론지을수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.