• Title/Summary/Keyword: Molecular approach

Search Result 956, Processing Time 0.023 seconds

Herbal Remedies for Combating Irradiation: a Green Anti-irradiation Approach

  • Lachumy, Subramanion Jothy;Oon, Chern Ein;Deivanai, Subramanian;Saravanan, Dharmaraj;Vijayarathna, Soundararajan;Choong, Yee Siew;Yeng, Chen;Latha, Lachimanan Yoga;Sasidharan, Sreenivasan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5553-5565
    • /
    • 2013
  • Plants play important roles in human life not only as suppliers of oxygen but also as a fundamental resource to sustain the human race on this earthly plane. Plants also play a major role in our nutrition by converting energy from the sun during photosynthesis. In addition, plants have been used extensively in traditional medicine since time immemorial. Information in the biomedical literature has indicated that many natural herbs have been investigated for their efficacy against lethal irradiation. Pharmacological studies by various groups of investigators have shown that natural herbs possess significant radioprotective activity. In view of the immense medicinal importance of natural product based radioprotective agents, this review aims at compiling all currently available information on radioprotective agents from medicinal plants and herbs, especially the evaluation methods and mechanisms of action. In this review we particularly emphasize on ethnomedicinal uses, botany, phytochemistry, mechanisms of action and toxicology. We also describe modern techniques for evaluating herbal samples as radioprotective agents. The usage of herbal remedies for combating lethal irradiation is a green anti-irradiation approach for the betterment of human beings without high cost, side effects and toxicity.

Molecular Immunological Markers for the Toxicological Investigation: Experiences from Lead-Induced Immunotoxicities

  • Yong Heo;David A. Lawrence;Kim, Hyoung-Ah
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.05a
    • /
    • pp.15-20
    • /
    • 2003
  • Molecular immunological methods are extensively applied to toxicological investigations. Furthermore, various immunological markers have been developed to substantiate molecular mechanisms of xenobiotics-mediated immunotoxicities. We discuss molecular immunological approach to evaluate lead (Pb)-induced immune alteration resulting in suppression of IFN${\gamma}$ production, and its value for establishing useful immunotoxicological markers.(omitted)

  • PDF

An ab Initio Predictive Study on Solvent Polarity (용매 극성도의 이론적 예측 연구)

  • Park, Min-Kyu;Cho, Soo-Gyeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.154-160
    • /
    • 2008
  • We investigated molecular polarity by using theoretical means and comparing empirical solvent polarity. Our approach employed electrostatic potentials at the molecular surface calculated by density functional methods. A number of molecular descriptors related to molecular polarities were computed from molecular surface electrostatic potentials. Among computed molecular descriptors, the most positive electrostatic potential provided the best correlation with the empirical solvent polarities. A regression equation was developed in order to predict molecular polarities of molecules whose experimental solvent polarities were unknown. The new regression equations were utilized in estimating solvent polarities of cubane derivatives which are considered important precusors of high-energy density meterials.

The Relationships among High School Students' Conceptual Understanding of Molecular Structure and Cognitive Variables (분자 구조에 대한 고등학생들의 개념 이해도와 인지 변인의 관계)

  • Noh, Tae-Hee;Seo, In-Ho;Cha, Jeong-Ho;Kim, Chang-Min;Kang, Suk-Jin
    • Journal of The Korean Association For Science Education
    • /
    • v.21 no.3
    • /
    • pp.497-505
    • /
    • 2001
  • In this study, the relationships among students' conceptual understanding of molecular structure and cognitive variables were investigated for 165 high school students. After they had learned 'High School Chemistry II' for two semesters, the tests of conception concerning molecular structure, spatial visualization ability, logical thinking ability, mental capacity, and learning approach were administered. The results indicated that students' conceptual understanding of molecular structure was not sound, and several misconceptions were found. The scores of the conception test were significantly correlated with all the cognitive variables studied. Multiple regression analyses were conducted to examine the predictive influences of students' cognitive variables on their conceptual understanding. Meaningful learning approach was the most significant predictor and were followed by logical thinking ability, rote learning approach, and mental capacity. However, spatial visualization ability did not have the predictive power.

  • PDF

3D-QSAR of Non-peptidyl Caspase-3 Enzyme Inhibitors Using CoMFA and CoMSIA

  • Lee, Do-Young;Hyun, Kwan-Hoon;Park, Hyung-Yeon;Lee, Kyung- A.;Lee, Bon-Su;Kim, Chan-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.273-276
    • /
    • 2006
  • Three dimensional quantitative structure-activity relationship studies for a series of isatin derivatives as a nonpeptidyl caspase-3 enzyme inhibitor were investigated using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The first approach of non-peptidyl small molecules by 3D QSAR may be useful in guiding further development of potent caspase-3 inhibitors.

Molecular Mechanism of Reactive Oxygen Species-dependent ASK1 Activation in Innate Immunity

  • Yamauchi, Shota;Noguchi, Takuya;Ichijo, Hidenori
    • IMMUNE NETWORK
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • Apoptosis signal-regulating kinase 1 (ASK1), a mitogen- activated protein kinase kinase kinase, plays pivotal roles in stress responses. In addition, ASK1 has emerged as a key regulator of immune responses elicited by pathogen-associated molecular patterns (PAMPs) and endogenous danger signals. Recent studies have demonstrated that reactive oxygen species (ROS)-dependent activation of ASK1 is required for LPS-stimulated cytokine production as well as extracellular ATP-induced apoptosis in immune cells. The mechanism of ROS-dependent regulation of ASK1 activity by thioredoxin and TRAFs has been well characterized. In this review, we focus on the molecular details of the activation of ASK1 and its involvement in innate immunity.

ONE-DIMENSIONAL TREATMENT OF MOLECULAR LINE RADIATIVE TRANSFER IN CLUMPY CLOUDS

  • Park, Yong-Sun
    • Journal of The Korean Astronomical Society
    • /
    • v.54 no.6
    • /
    • pp.183-190
    • /
    • 2021
  • We have revisited Monte Carlo radiative transfer calculations for clumpy molecular clouds. Instead of introducing a three-dimensional geometry to implement clumpy structure, we have made use of its stochastic properties in a one-dimensional geometry. Taking into account the reduction of spontaneous emission and optical depth due to clumpiness, we have derived the excitation conditions of clumpy clouds and compared them with those of three-dimensional calculations. We found that the proposed approach reproduces the excitation conditions in a way compatible to those from three-dimensional models, and reveals the dependencies of the excitation conditions on the size of clumps. When bulk motions are involved, the applicability of the approach is rather vague, but the one-dimensional approach can be an excellent proxy for more rigorous three-dimensional calculations.

Molecular Genetic Analysis of Leaf Senescence in Arabidopsis

  • Woo, Hye-Ryun;Lee, Ung;Cho, Sung-Whan;Lim, Pyung-Ok;Nam, Hong-Gil
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.4
    • /
    • pp.259-268
    • /
    • 2000
  • Senescence is a sequence of biochemical and physiological events that lead to death of a cell, organ, or whole organism. Senescence is now clearly regarded as a genetically determined and evolutionarilly acquired developmental process comprising the final stage of development. However, in spite of the biological and practical importance, genetic mechanism of senescence has been very limited. Through forward and reverse genetic approaches, we are trying to reveal the molecular and genetic mechanism of senescence in plants, employing leaf organs of Arabidopsis as a model system. Using forward genetic approach, we have initially isolated several delayed senescence mutants either from T-DNA insertional lines or chemical-mutagenized lines. In the case of ore 4 and ore 9 mutants, the mutated genes were identified. The recent progress on characterization of mutants and identification of the mutated genes will be reported. We are also screening mutations from other various sources of mutant pools, such as activation tagging lines and promoter trap lines. Two dominant senescence-delayed mutants were isolated from the activation tagging pool. Cloning of the genes responsible for this phenotype is in progress. For reverse genetic approach, the genes that induced during leaf senescence were first isolated by differential screening method. We are currently using PCR-based suppression subtractive hybridization, designed to enrich a cDNA library for rare differentially expressed transcripts. Using this method, we have identified over 35 new sequences that are upregulated at leaf senescence stage. We are investigating the function of these novel genes by systemically generating antisense lines.

  • PDF

Molecular Nuclear imaging of Angiogenesis (혈관신생 분자핵의학 영상)

  • Lee, Kyung-Han
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.2
    • /
    • pp.171-174
    • /
    • 2004
  • Angiogenesis, the formation of new capillaries from existing vessels, increases oxygenation and nutrient supply to ischemic tissue and allows tumor growth and metastasis. As such, angiogenesis targeting provides a novel approach for cancer treatment with easier drug delivery and less drug resistance. Therapeutic anti-angiogenesis has shown impressive effects in animal tumor models and are now entering clinical trials. However, the successful clinical introduction of this new therapeutic approach requires diagnostic tools that can reliably measure angiogenesis in a noninvasive and repetitive manner. Molecular imaging is emerging as an exciting new discipline that deals with imaging of disease on a cellular or genetic level. Angiogenesis imaging is an important area for molecular imaging research, and the use of radiotracers offers a particularly promising technique for its development. While current perfusion and metabolism radiotracers can provide useful information related to tissue vascularity, recent endeavors are focused on the development of novel radioprobes that specifically and directly target angiogenic vessels. Presently available proges include RGD sequence containing peptides that target ${\alpha}_v\;{\beta}_3$ integrin, endothelial growth factors such as VEGF or FGF, metalloptoteinase inhibitors, and specific antiangiogenic drugs. It is now clear that nuclear medicine techniques have a remarkable potential for angiogenesis imaging, and efforts are currently continuing to develop new radioprobes with superior imaging properties. With future identification of novel targets, design of better probes, and improvements in instrumentation, radiotracer angiogenesis imaging promises to play an increasingly important role in the diagnostic evaluation and treatment of cancer and other angiogenesis related diseases.

A Study on the Pumping Performance of a Disk-type Drag Pump (원판형 드래그펌프의 배기특성에 관한 연구)

  • Hwang, Young-Kyu;Heo, Joong-Sik;Choi, Wook-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.860-869
    • /
    • 2000
  • Numerical and experimental investigations are performed for the molecular transition and slip flows in pumping channels of a disk-type drag pump. The flow occurring in the pumping channel develops from the molecular transition to the slip flow traveling downstream. Two different numerical methods are used in this analysis: the first one is a continuum approach in solving the Navier-Stokes equations with slip boundary conditions, and the second one is a stochastic approach through the use of the direct simulation Monte Carlo method. In the experimental study, the inlet pressures are measured for various outlet pressures in the range of 0.1{\sim}4Torr. From the present study, the numerical results of predicting the performance, obtained by both methods, agree well with the experimental data for the range of Knudsen number $Kn{\leq}0.1$ (i.e., the slip flow regime). But the results from the second method only agree with the experimental data for Kn>0.1(i.e., the molecular transition regime)