• 제목/요약/키워드: Molecular Surface

검색결과 2,077건 처리시간 0.03초

Ginsenoside compound K reduces ischemia/reperfusion-induced neuronal apoptosis by inhibiting PTP1B-mediated IRS1 tyrosine dephosphorylation

  • Jing, Fu;Liang, Yu;Qian, Yu;Nengwei, Yu;Fei, Xu;Suping, Li
    • Journal of Ginseng Research
    • /
    • 제47권2호
    • /
    • pp.274-282
    • /
    • 2023
  • Background: Ginsenoside compound K (CK) stimulated activation of the PI3K-Akt signaling is one of the major mechanisms in promoting cell survival after stroke. However, the underlying mediators remain poorly understood. This study aimed to explore the docking protein of ginsenoside CK mediating the neuroprotective effects. Materials and methods: Molecular docking, surface plasmon resonance, and cellular thermal shift assay were performed to explore ginsenoside CK interacting proteins. Neuroscreen-1 cells and middle cerebral artery occlusion (MCAO) model in rats were utilized as in-vitro and in-vivo models. Results: Ginsenoside CK interacted with recombinant human PTP1B protein and impaired its tyrosine phosphatase activity. Pathway and process enrichment analysis confirmed the involvement of PTP1B and its interacting proteins in PI3K-Akt signaling pathway. PTP1B overexpression reduced the tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) after oxygen-glucose deprivation/reoxygenation (OGD/R) in neuroscreen-1 cells. These regulations were confirmed in the ipsilateral ischemic hemisphere of the rat brains after MCAO/R. Ginsenoside CK treatment reversed these alterations and attenuated neuronal apoptosis. Conclusion: Ginsenoside CK binds to PTP1B with a high affinity and inhibits PTP1B-mediated IRS1 tyrosine dephosphorylation. This novel mechanism helps explain the role of ginsenoside CK in activating the neuronal protective PI3K-Akt signaling pathway after ischemia-reperfusion injury.

Profiling of differentially expressed proteins between fresh and frozen-thawed Duroc boar semen using ProteinChip CM10

  • Yong-Min Kim;Sung-Woo Park;Mi-Jin Lee;Da-Yeon Jeon;Su-Jin Sa;Yong-Dae Jeong;Ha-Seung Seong;Jung-Woo Choi;Shinichi, Hochi;Eun-Seok Cho;Hak-Jae Chung
    • Journal of Animal Science and Technology
    • /
    • 제65권2호
    • /
    • pp.401-411
    • /
    • 2023
  • Many studies have been conducted to improve technology for semen cryopreservation in pigs. However, computer-assisted analysis of sperm motility and morphology is insufficient to predict the molecular function of frozen-thawed semen. More accurate expression patterns of boar sperm proteins may be derived using the isobaric tags for relative and absolute quantification (iTRAQ) technique. In this study, the iTRAQ-labeling system was coupled with liquid chromatography tandem-mass spectrometry (LC-MS/MS) analysis to identify differentially expressed CM10-fractionated proteins between fresh and frozen-thawed boar semen. A total of 76 protein types were identified to be differentially expressed, among which 9 and 67 proteins showed higher and lower expression in frozen-thawed than in fresh sperm samples, respectively. The classified functions of these proteins included oxidative phosphorylation, mitochondrial inner membrane and matrix, and pyruvate metabolic processes, which are involved in adenosine triphosphate (ATP) synthesis; and sperm flagellum and motile cilium, which are involved in sperm tail structure. These results suggest a possible network of biomarkers associated with survival after the cryopreservation of Duroc boar semen.

Highly catalysis Zinc MOF-loaded nanogold coupled with aptamer to assay trace carbendazim by SERS

  • Jinling Shi;Jingjing Li;Aihui Liang;Zhiliang Jiang
    • Advances in nano research
    • /
    • 제14권4호
    • /
    • pp.313-327
    • /
    • 2023
  • Zinc metal organic framework (MOFZn)-loaded goad nanoparticles (AuNPs) sol (Au@MOFZn), which was characterized by TEM, Mapping, FTIR, XRD, and molecular spectrum, was prepared conveniently by solvothermal method. The results indicated that Au@MOFZn had a very strong catalytic effect with the nanoreaction of AuNPs formation between sodium oxalate (SO) and HAuCl4. AuNPs in the new indicator reaction had a strong resonance Rayleigh scattering (RRS) signal at 370 nm. The indicator AuNPs generated by this reaction, which had the most intense surface enhanced Raman scattering (SERS) peak at 1621 cm -1. The new SERS/RRS indicator reaction in combination with specific aptamer (Apt) to fabricate a sensitive and selective Au@MOFZn catalytic amplification-aptamer SERS/RRS assay platform for carbendazim (CBZ), with SERS/RRS linear range of 0.025-0.5 ng/mL. The detection limit was 0.02 ng/mL. Similarly, this assay platform has been also utilized to detect oxytetracycline (OTC) and profenofos (PF).

Evaluation of porcine intestinal organoids as an in vitro model for mammalian orthoreovirus 3 infection

  • Se-A Lee;Hye Jeong Lee;Na-Yeon Gu;Yu-Ri Park;Eun-Ju Kim;Seok-Jin Kang;Bang-Hun Hyun;Dong-Kun Yang
    • Journal of Veterinary Science
    • /
    • 제24권4호
    • /
    • pp.53.1-53.12
    • /
    • 2023
  • Background: Mammalian orthoreovirus type 3 (MRV3), which is responsible for gastroenteritis in many mammalian species including pigs, has been isolated from piglets with severe diarrhea. However, the use of pig-derived cells as an infection model for swine-MRV3 has rarely been studied. Objectives: This study aims to establish porcine intestinal organoids (PIOs) and examine their susceptibility as an in vitro model for intestinal MRV3 infection. Methods: PIOs were isolated and established from the jejunum of a miniature pig. Established PIOs were characterized using polymerase chain reaction (PCR) and immunofluorescence assays (IFAs) to confirm the expression of small intestine-specific genes and proteins, such as Lgr5, LYZI, Mucin-2, ChgA, and Villin. The monolayered PIOs and three-dimensional (3D) PIOs, obtained through their distribution to expose the apical surface, were infected with MRV3 for 2 h, washed with Dulbecco's phosphate-buffered saline, and observed. Viral infection was confirmed using PCR and IFA. We performed quantitative real-time reverse transcription-PCR to assess changes in viral copy numbers and gene expressions linked to intestinal epithelial genes and antiviral activity. Results: The established PIOs have molecular characteristics of intestinal organoids. Infected PIOs showed delayed proliferation with disruption of structures. In addition, infection with MRV3 altered the gene expression linked to intestinal epithelial cells and antiviral activity, and these effects were observed in both 2D and 3D models. Furthermore, viral copy numbers in the supernatant of both models increased in a time-dependent manner. Conclusions: We suggest that PIOs can be an in vitro model to study the infection mechanism of MRV3 in detail, facilitating pharmaceutical development.

GWAS of Salt Tolerance and Drought Tolerance in Korean Wheat Core Collection

  • Ji Yu Jeong;Kyeong Do Min;Jae Toon Kim
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.195-195
    • /
    • 2022
  • Abiotic stress is a major problem in global agriculture as it negatively affects crop growth, yield, and quality. Wheat (Triticum aestivum) is the world's second-highest-producing food resource, so the importance of mitigating damage caused by abiotic stress has been emerging. In this study, we performed GWAS to search for SNPs associated with salt tolerance and drought tolerance. NaCl (200 mM) treatment was performed at the seedling stage using 613 wheat varieties in Korean wheat core collection. Root length, root surface area, root average diameter, and root volume were measured. Drought stress was applied at the seedling stage, and the above phenotypes were measured. GW AS was performed for each phenotype data using the MLM, MLMM, and FarmCPU models. The best salt-tolerant wheat varieties were 'MK2402', 'Gyeongnam Geochang-1985-3698', and 'Milyang 13', showing superior root growth. The significant SNP AX-94704125 (BA00756838) were identified in all models. The genes closely located to the significant SNP were searched within ± 250 kb of the corresponding SNP. A total of 11 genes were identified within the region. NB-ARC involved in the defense response, FKSI involved in cell wall biosynthesis, and putative BP Ml involved in abiotic stress responses were discovered in the 11 genes. The best drought-tolerant wheat varieties were 'PI 534284', 'Moro of Sind', and 'CM92354-33M-0Y-0M-6Y-0B-0BGD', showing superior root growth. This study discovered SNPs associated with salt tolerance in Korean wheat core collection through GWAS. GWAS of drought tolerance is now proceeding, and the GWAS results will be represented on a poster. The SNPs identified by GWAS can be useful for studying molecular mechanisms of salt tolerance and drought tolerance in wheat.

  • PDF

Poly(3-hydroxybutyrate) Degradation by Bacillus infantis sp. Isolated from Soil and Identification of phaZ and bdhA Expressing PHB Depolymerase

  • Yubin Jeon;HyeJi Jin;Youjung Kong;Haeng-Geun Cha;Byung Wook Lee;Kyungjae Yu;Byongson Yi;Hee Taek Kim;Jeong Chan Joo;Yung-Hun Yang;Jongbok Lee;Sang-Kyu Jung;See-Hyoung Park;Kyungmoon Park
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권8호
    • /
    • pp.1076-1083
    • /
    • 2023
  • Poly(3-hydroxybutyrate) (PHB) is a biodegradable and biocompatible bioplastic. Effective PHB degradation in nutrient-poor environments is required for industrial and practical applications of PHB. To screen for PHB-degrading strains, PHB double-layer plates were prepared and three new Bacillus infantis species with PHB-degrading ability were isolated from the soil. In addition, phaZ and bdhA of all isolated B. infantis were confirmed using a Bacillus sp. universal primer set and established polymerase chain reaction conditions. To evaluate the effective PHB degradation ability under nutrient-deficient conditions, PHB film degradation was performed in mineral medium, resulting in a PHB degradation rate of 98.71% for B. infantis PD3, which was confirmed in 5 d. Physical changes in the degraded PHB films were analyzed. The decrease in molecular weight due to biodegradation was confirmed using gel permeation chromatography and surface erosion of the PHB film was observed using scanning electron microscopy. To the best of our knowledge, this is the first study on B. infantis showing its excellent PHB degradation ability and is expected to contribute to PHB commercialization and industrial composting.

PCR 전처리 효율 향상을 위한 PEO 제어 실리카 나노섬유 제작 (Improvement of PCR Preprocessing Efficiency through PEO-controlled Synthesis of Silica Nanofibers)

  • 이승민;최현호;이광호
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권6호
    • /
    • pp.465-475
    • /
    • 2023
  • In this study, we demonstrated a silica nanofibrous membrane based on the electrospinning process and evaluated its DNA isolation and purification performance in PCR pretreatment. Generally, silica membranes made of non-woven fabric are used for PCR pretreatment, but this study aimed to improve the efficiency of the pretreatment process by developing a nanofiber-type silica membrane with high specific surface area and porosity. In order to manufacture a nanofiber-shaped silica film while maintaining the original physical properties of silica, nanofiber membranes produced by adding various concentrations of PEO (5 wt%, 8 wt%, and 10 wt%) to silica prepared by the sol-gel method were compared. In terms of nanofiber membrane production, the higher the PEO concentration, the more effective it was in producing nanofiber membranes. The produced silica nanofiber membrane was inserted to a pretreatment device used in commercial PCR equipment, and the pretreatment performance was compared and verified using Salmonella bacteria. When Salmonella was used, samples containing 5 wt% PEO showed superior PCR efficiency compared to samples containing 8 wt% and 10 wt% PEO. These results show that adding 5 wt% of PEO can effectively improve DNA purification and separation by producing a nanofiber-shaped silica film while maintaining the physical properties of silica. We expect that this study will contribute to the development of effective PCR pretreatment technology essential for various molecular biology applications.

Novel Anti-Mesothelin Nanobodies and Recombinant Immunotoxins with Pseudomonas Exotoxin Catalytic Domain for Cancer Therapeutics

  • Minh Quan Nguyen;Do Hyung Kim;Hye Ji Shim;Huynh Kim Khanh Ta;Thi Luong Vu;Thi Kieu Oanh Nguyen;Jung Chae Lim;Han Choe
    • Molecules and Cells
    • /
    • 제46권12호
    • /
    • pp.764-777
    • /
    • 2023
  • Recombinant immunotoxins (RITs) are fusion proteins consisting of a targeting domain linked to a toxin, offering a highly specific therapeutic strategy for cancer treatment. In this study, we engineered and characterized RITs aimed at mesothelin, a cell surface glycoprotein overexpressed in various malignancies. Through an extensive screening of a large nanobody library, four mesothelin-specific nanobodies were selected and genetically fused to a truncated Pseudomonas exotoxin (PE24B). Various optimizations, including the incorporation of furin cleavage sites, maltose-binding protein tags, and tobacco etch virus protease cleavage sites, were implemented to improve protein expression, solubility, and purification. The RITs were successfully overexpressed in Escherichia coli, achieving high solubility and purity post-purification. In vitro cytotoxicity assays on gastric carcinoma cell lines NCI-N87 and AGS revealed that Meso(Nb2)-PE24B demonstrated the highest cytotoxic efficacy, warranting further characterization. This RIT also displayed selective binding to human and monkey mesothelins but not to mouse mesothelin. The competitive binding assays between different RIT constructs revealed significant alterations in IC50 values, emphasizing the importance of nanobody specificity. Finally, a modification in the endoplasmic reticulum retention signal at the C-terminus further augmented its cytotoxic activity. Our findings offer valuable insights into the design and optimization of RITs, showcasing the potential of Meso(Nb2)-PE24B as a promising therapeutic candidate for targeted cancer treatment.

Molecular and Phenotypic Investigation on Antibacterial Activities of Limonene Isomers and Its Oxidation Derivative against Xanthomonas oryzae pv. oryzae

  • Hyeonbin Kim;Mi Hee Kim;Ui-Lim Choi;Moon-Soo Chung;Chul-Ho Yun;Youngkun Shim;Jaejun Oh;Sungbeom Lee;Gun Woong Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권3호
    • /
    • pp.562-569
    • /
    • 2024
  • Xanthomonas oryzae pv. oryzae (Xoo) causes a devastating bacterial leaf blight in rice. Here, the antimicrobial effects of ᴰ-limonene, ᴸ-limonene, and its oxidative derivative carveol against Xoo were investigated. We revealed that carveol treatment at ≥ 0.1 mM in liquid culture resulted in significant decrease in Xoo growth rate (> 40%) in a concentration-dependent manner, and over 1 mM, no growth was observed. The treatment with ᴰ-limonene and ᴸ-limonene also inhibited the Xoo growth but to a lesser extent compared to carveol. These results were further elaborated with the assays of motility, biofilm formation and xanthomonadin production. The carveol treatment over 1 mM caused no motilities, basal level of biofilm formation (< 10%), and significantly reduced xanthomonadin production. The biofilm formation after the treatment with two limonene isomers was decreased in a concentration-dependent manner, but the degree of the effect was not comparable to carveol. In addition, there was negligible effect on the xanthomonadin production mediated by the treatment of two limonene isomers. Field emission-scanning electron microscope (FE-SEM) unveiled that all three compounds used in this study cause severe ultrastructural morphological changes in Xoo cells, showing shrinking, shriveling, and holes on their surface. Moreover, quantitative real-time PCR revealed that carveol and ᴰ-limonene treatment significantly down-regulated the expression levels of genes involved in virulence and biofilm formation of Xoo, but not with ᴸ-limonene. Together, we suggest that limonenes and carveol will be the candidates of interest in the development of biological pesticides.

낙동강 하천 및 호소 퇴적물에서의 PAHs, OCPs, Co-PCBs 농도 분포와 발생원 평가 (Assessment of Distribution Patterns and Sources for PAHs, OCPs, and Co-PCBs in the Surface Sediments from the Nakdong River Basin, Korea)

  • 강희형;이인석;허인애;신원식;황인성;김영훈;허진;신현상;김준하;오정은
    • 대한환경공학회지
    • /
    • 제32권7호
    • /
    • pp.656-664
    • /
    • 2010
  • 본 연구에서는 낙동강 수계 내 하천 및 호소의 퇴적물을 대상으로 16종의 다환방향족탄화수소(PAHs), 다염화바이페닐(PCBs), 유기염소계 농약(OCPs)류를 분석하였다. 하천 퇴적물에 존재하는 16종의 PAHs와 12종의 Co-PCBs 농도 수준은 각각 N.D.~969.3 ng/g-dry, 4.2~7716.5 pg/g-dry(0.0~10.1 pg-TEQ/g-dry)이었다. 호소 퇴적물에 존재하는 16종의 PAHs류는 5.8~2987.2 ng/g-dry, 12종의 Co-PCBs는 4.3~461.1 pg/g-dry(0.0~0.6 pg-TEQ/g-dry), OCPs의 농도 수준은 N.D.~1.5 ng/g-dry이었으며, OCPs 중 DDT류만 검출되었다. 이는 환경질 평가를 위한 가이드 라인보다 훨씬 낮은 수준이었다. 낙동강 수계 내 하천 퇴적물에 존재하는 16종의 PAHs 중 저분자 PAHs의 비율이 높은 반면, 호소에서는 중 고분자 PAHs의 비율이 높았다. 그리고 PCBs는 모든 퇴적물 시료에서 PCB-118과 PCB-105의 비율이 가장 높게 나타났으며, 이는 이전의 연구와도 일치하는 결과이다. 검출된 PAHs와 Co-PCBs의 배울원 추정 결과, PAHs의 경우 일부 지점들을 제외한 대부분의 지점들이 석탄 및 바이오매스의 연소와 관련 있었으며, Co-PCBs의 경우 상업적인 PCBs와 관련이 있음을 알 수 있었다.