• Title/Summary/Keyword: Molecular Surface

Search Result 2,077, Processing Time 0.028 seconds

Photoelectrochemical Water Oxidation Using ZnO Nanorods Coupled with Cobalt-Based Catalysts

  • Jeon, Tae-Hwa;Choi, Sung-Kyu;Jeong, Hye-Won;Kim, Seung-Do;Park, Hyun-Woong
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.187-192
    • /
    • 2011
  • Photoelectrochemical performances of ZnO electrodes are enhanced by coupling with cobalt-based catalyst (CoPi) in phosphate electrolyte (pH 7). For this study, hexagonal pillar-shaped ZnO nanorods are grown on ZnO electrodes through a chemical bath deposition, onto which CoPi is deposited with different photodeposition times (10-30 min). A scanning electron microscopic study indicates that CoPi deposition does not induce any change of ZnO morphology and an energy-dispersive X-ray spectroscopic analysis shows that inorganic phosphate ions (Pi) exist on ZnO surface. Bare ZnO electrodes generate the current of ca. $0.36mA/cm^2$ at a bias potential of 0.5 V vs. SCE, whereas ZnO/CoPi (deposited for 10 min) has ca. 50%-enhanced current ($0.54mW/cm^2$) under irradiation of AM 1.5G-light ($400mW/cm^2$). The excess loading of CoPi on ZnO results in decrease of photocurrents as compared to bare ZnO likely due to limited electrolyte access to ZnO and/or CoPi-mediated recombination of photogenerated charge carriers. The primary role of CoPi is speculated to trap the photogenerated holes and thereby oxidize water into molecular oxygen via an intervalency cycle among Co(II), Co(III), and Co(IV).

Structural Bioinformatics Analysis of Disease-related Mutations

  • Park, Seong-Jin;Oh, Sang-Ho;Park, Dae-Ui;Bhak, Jong
    • Genomics & Informatics
    • /
    • v.6 no.3
    • /
    • pp.142-146
    • /
    • 2008
  • In order to understand the protein functions that are related to disease, it is important to detect the correlation between amino acid mutations and disease. Many mutation studies about disease-related proteins have been carried out through molecular biology techniques, such as vector design, protein engineering, and protein crystallization. However, experimental protein mutation studies are time-consuming, be it in vivo or in vitro. We therefore performed a bioinformatic analysis of known disease-related mutations and their protein structure changes in order to analyze the correlation between mutation and disease. For this study, we selected 111 diseases that were related to 175 proteins from the PDB database and 710 mutations that were found in the protein structures. The mutations were acquired from the Human Gene Mutation Database (HGMD). We selected point mutations, excluding only insertions or deletions, for detecting structural changes. To detect a structural change by mutation, we analyzed not only the structural properties (distance of pocket and mutation, pocket size, surface size, and stability), but also the physico-chemical properties (weight, instability, isoelectric point (IEP), and GRAVY score) for the 710 mutations. We detected that the distance between the pocket and disease-related mutation lay within $20\;{\AA}$ (98.5%, 700 proteins). We found that there was no significant correlation between structural stability and disease-causing mutations or between hydrophobicity changes and critical mutations. For large-scale mutational analysis of disease-causing mutations, our bioinformatics approach, using 710 structural mutations, called "Structural Mutatomics," can help researchers to detect disease-specific mutations and to understand the biological functions of disease-related proteins.

Characterization of Thickness and Thermoelastic Properties of Interphase in Polymer Nanocomposites using Multiscale Analysis (멀티스케일 해석을 통한 고분자 나노복합재의 계면 상 두께와 열탄성 물성 도출)

  • Choi, Joonmyung;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.577-582
    • /
    • 2016
  • In this study, a multiscale method for solving a thermoelasticity problem for interphase in the polymeric nanocomposites is developed. Molecular dynamics simulation and finite element analysis were numerically combined to describe the geometrical boundaries and the local mechanical response of the interfacial region where the polymer networks were highly interacted with the nanoparticle surface. Also, the micrmechanical thermoelasticity equations were applied to the obtained equivalent continuum unit to compute the growth of interphase thickness according to the size of nanoparticles, as well as the thermal phase transition behavior at a wide range of temperatures. Accordingly, the equivalent continuum model obtained from the multiscale analysis provides a meaningful description of the thermoelastic behavior of interphase as well as its nanoparticle size effect on thermoelasticity at both below and above the glass transition temperature.

Gamma Irradiation Up-regulates Expression of B Cell Differentiation Molecule CD23 by NF-κB Activation

  • Rho, Hyun-Sook;Park, Soon-Suk;Lee, Choong-Eun
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.507-514
    • /
    • 2004
  • Gamma irradiation ($\gamma$-IR) is reported to have diverse effects on immune cell apoptosis, survival and differentiation. In the present study, the immunomodulatory effect of a low dose $\gamma$-IR (5~10 Gy) was investigated, focusing on the role of NF-${\kappa}B$ in the induction of the B cell differentiation molecule, CD23/FceRII. In the human B cell line Ramos, $\gamma$-IR not only induced CD23 expression, but also augmented the IL-4-induced surface CD23 levels. While $\gamma$-IR did not cause STAT6 activation in these cells, it did induce both DNA binding and the transcriptional activity of NF-${\kappa}B$ in the $I{\kappa}B$ degradation-dependent manner. It was subsequently found that different NF-${\kappa}B$ regulating signals modulated the $\gamma$-IR-or IL-4-induced CD23 expression. Inhibitors of NF-${\kappa}B$ activation, such as PDTC and MG132, suppressed the $\gamma$-IR-mediated CD23 expression. In contrast, Ras, which potentiates $\gamma$-IR-induced NF-${\kappa}B$ activity in these cells, further augmented the $\gamma$-IR- or IL-4-induced CD23 levels, The induction of NF-${\kappa}B$ activation and the subsequent up-regulation of CD23 expression by $\gamma$-IR were also observed in monocytic cells. These results suggest that $\gamma$-IR, at specific dosages, can modulate immune cell differentiation through the activation of NF-${\kappa}B$, and this potentially affects the immune inflammatory response that is mediated by cytokines.

Modulatory Effect of Kaempferitrin, a 3,7-Diglycosylflavone, on the LPS-Mediated Up-regulation of Surface Co-stimulatory Molecules and CD29-Mediated Cell-cell Adhesion in Monocytic- and Macrophage-like Cells (활성화된 단핵구 및 대식세포의 항원제시기능에 대한 Kaempferitrin의 조절 효과)

  • Kim, Byung-Hun;Cho, Dong-Ha;Cho, Jae-Youl
    • YAKHAK HOEJI
    • /
    • v.51 no.6
    • /
    • pp.482-489
    • /
    • 2007
  • Kaempferitrin, isolated from Kenaf (Hibiscus cannabinus), was examined to evaluate its modulatory effects on antigen-presenting cell functions of macrophages/monocytes such as phagocytosis of foreign materials, up-regulation of costimulatory molecules (CD40, CD80 and CD86), adhesion molecule activation, and antigen processing and presentation. Kaempferitrin strongly blocked up-regulation of CD40, CD80 and CD86, but not pattern recognition receptor (PRR) (e.g., TLR2). It also suppressed functional activation of CD29 (${\beta}1$-integrins), as assessed by cell-cell adhesion assay, required for T cell-antigen-presenting cell (APC) interaction. Furthermore, this compound did not block a simple activation of CD29, as assessed by cell-fibronectin adhesion assay. However, the compound did not diminish phagocytic uptake, an initial step for antigen processing, and ROS generation in RAW264.7 cells. In particular, to understand molecular mechanism of kaempferitrin-mediated inhibition, the regulatory role of LPS-induced signaling events was examined using immunoblotting analysis. Interestingly, this compound dose dependently suppressed the phosphorylation of $I{\kappa}B{\alpha}$, Src, Akt and Syk, demonstrating that it can negatively modulate the activation of these signaling enzymes. Therefore, our data suggested that kaempferitrin may be involved in regulating APC function-relevant immune responses of macrophages and monocytes by regulating intracellular signaling.

Study for Synthesis and Properties of Polyurethane Based on Polyester Polyol with Varying Hydroxyl Values for Automotive Pre-painted Metal Sheet Applications (자동차 선도장 강판용 폴리에스테르 폴리올 기반 폴리우레탄의 합성과 물성에 대한 연구)

  • Kang, Choong Yeol;Lee, Jae Young;Noh, Seung Man;Nam, Joon Hyun;Park, Jong Myung;Jung, Hyun Wook;Yu, Sang Soo
    • Journal of Adhesion and Interface
    • /
    • v.12 no.1
    • /
    • pp.34-42
    • /
    • 2011
  • The roll coating process is well-known for completely replacement coating system with an existing wet paint process for automotive which has low productivity and is not environment-friendly process. It is very important to evaluate the curing behavior, corrosion resistance and processing property as well as rheological behavior in order to realize a film flexibility and hardness simultaneously. In this study, we have synthesized the polyester resin modified with hydroxyl values and molecular weight to apply the pre-painted system, and then evaluated the curing behavior, deep drawing, tensile strength and rheological properties. It was observed that N-0375-40 of 40 (mg KOH/mol) hydroxyl values showed the most suitable for flexibility, film hardness, and curing behavior.

Hydrolysis of Phosphatidyicholine to Initiate HeLa Cell Adhesion to a Gelatin Substratum (Phosphatidylcholine의 분해에 의한 Hela 세포와 Gelatin 기질과의 상호작용의 유도)

  • ;;;;;Bruce S. Jacobson
    • The Korean Journal of Zoology
    • /
    • v.38 no.4
    • /
    • pp.457-464
    • /
    • 1995
  • Hela cells, a transformed human epithelial cell line, attach to various substrata but subsequent spreading is specific to collagen or gelatin. The spreading is initiated by the activation of phospholipase $A_2$ (PLA$_2$) which produces arachidonic acid (AA) as a consequence of cell surface collagen receptor clustering. This study examines the mechanism of PLA$_2$activation and which phospholipids are hydrolyzed by PIA$_2$ to release AA in response to Hela cell adhesion to a gelatin substratum. The levels of phosphatidyicholine decreases, among various phospholipids, during attachment and spreading of Hela cells. Lysophosphatidyicholine Is the only lysophospholipids formed during ileLa cell adhesion indicating that clustered collagen receptors activate PLA$_2$to hydrolyze posphatidylcholine to AA and lysophosphatidylcholine. Among various molecular entitles which are known to regulate PLA$_2$ activation, we have previously shown that PLA2 activation is not mediated by either changes in $Ca_2$+ levels, alkalinization of cytoplasmic p11, or activation of protein hinase C. It is also likely that PIA2 activation is not mediated by either pertussis or cholera toxinsensitive G proteins as those toxins do not affect both AA release and cell spreading.

  • PDF

Effect of Additives on the Viability of Bifidobacteria Loaded in Alginate Poly-l-lysine Microparticles during the Freeze-drying Process

  • Cui, Jing-Hao;Cao, Qing-Ri;Choi, Yun-Jaie;Lee, Kyung-Hoon;Lee, Beom-Jin
    • Archives of Pharmacal Research
    • /
    • v.29 no.8
    • /
    • pp.707-711
    • /
    • 2006
  • Bifidobacteria-loaded alginate poly-l-lysine microparticles (bap microparticles) were prepared using an air atomization method and then freeze-dried. The viability of the bap microparticles was investigated as a function of the amount of the bifidobacteria cultures, and the addition of a yeast extract, cryoprotectants, antioxidants and neutralizer. The size of the bap microparticles with and without the bifidobacteria was $84.8{\pm}28.5\;{\mu}m$ ($mean{\pm}standard$ deviation) and $113.1{\pm}38.5\;{\mu}m$, respectively. The surface morphology was slightly ellipsoid and wrinkled regardless of the incorporating bifidobacteria. The viability gradually decreased with increasing freeze-drying time. Free-flowing powdered bap microparticles were obtained at least 12 h after freeze-drying the wetted slurry of bap microparticles. However, the particles tended to aggregate when either lactose or ascorbic acid was added. The addition of a yeast extract, cryoprotectants (glycerol and lactose), antioxidants ($NaHSO_3$ and ascorbic acid) and neutralizer $(Mg_3(PO_4)_2)$ resulted in a significantly higher viability of the bifidobacteria in the bap microparticles after freeze-drying (0.34-1.84 log) compared with the culture alone.

SUMO Proteins are not Involved in TGF-${\beta}1$-induced, Smad3/4-mediated Germline ${\alpha}$ Transcription, but PIASy Suppresses it in CH12F3-2A B Cells

  • Lee, Sang-Hoon;Kim, Pyeung-Hyeun;Oh, Sang-Muk;Park, Jung-Hwan;Yoo, Yung-Choon;Lee, Junglim;Park, Seok-Rae
    • IMMUNE NETWORK
    • /
    • v.14 no.6
    • /
    • pp.321-327
    • /
    • 2014
  • TGF-${\beta}$ induces IgA class switching by B cells. We previously reported that Smad3 and Smad4, pivotal TGF-${\beta}$ signal-transducing transcription factors, mediate germline (GL) ${\alpha}$ transcription induced by TGF-${\beta}1$, resulting in IgA switching by mouse B cells. Post-translational sumoylation of Smad3 and Smad4 regulates TGF-${\beta}$-induced transcriptional activation in certain cell types. In the present study, we investigated the effect of sumoylation on TGF-${\beta}1$-induced, Smad3/4-mediated $GL{\alpha}$ transcription and IgA switching by mouse B cell line, CH12F3-2A. Overexpression of small ubiquitin-like modifier (SUMO)-1, SUMO-2 or SUMO-3 did not affect TGF-${\beta}1$-induced, Smad3/4-mediated $GL{\alpha}$ promoter activity, expression of endogenous $GL{\alpha}$ transcripts, surface IgA expression, and IgA production. Next, we tested the effect of the E3 ligase PIASy on TGF-${\beta}1$-induced, Smad3/4-mediated $GL{\alpha}$ promoter activity. We found that PIASy overexpression suppresses the $GL{\alpha}$ promoter activity in cooperation with histone deacetylase 1. Taken together, these results suggest that SUMO itself does not affect regulation of $GL{\alpha}$ transcription and IgA switching induced by TGF-${\beta}1$/Smad3/4, while PIASy acts as a repressor.

Development of a Novel Subunit Vaccine Targeting Fusobacterium nucleatum FomA Porin Based on In Silico Analysis

  • Jeong, Kwangjoon;Sao, Puth;Park, Mi-Jin;Lee, Hansol;Kim, Shi Ho;Rhee, Joon Haeng;Lee, Shee Eun
    • International Journal of Oral Biology
    • /
    • v.42 no.2
    • /
    • pp.63-70
    • /
    • 2017
  • Selecting an appropriate antigen with optimal immunogenicity and physicochemical properties is a pivotal factor to develop a protein based subunit vaccine. Despite rapid progress in modern molecular cloning and recombinant protein technology, there remains a huge challenge for purifying and using protein antigens rich in hydrophobic domains, such as membrane associated proteins. To overcome current limitations using hydrophobic proteins as vaccine antigens, we adopted in silico analyses which included bioinformatic prediction and sequence-based protein 3D structure modeling, to develop a novel periodontitis subunit vaccine against the outer membrane protein FomA of Fusobacterium nucleatum. To generate an optimal antigen candidate, we predicted hydrophilicity and B cell epitope parameter by querying to web-based databases, and designed a truncated FomA (tFomA) candidate with better solubility and preserved B cell epitopes. The truncated recombinant protein was engineered to expose epitopes on the surface through simulating amino acid sequence-based 3D folding in aqueous environment. The recombinant tFomA was further expressed and purified, and its immunological properties were evaluated. In the mice intranasal vaccination study, tFomA significantly induced antigen-specific IgG and sIgA responses in both systemic and oral-mucosal compartments, respectively. Our results testify that intelligent in silico designing of antigens provide amenable vaccine epitopes from hard-to-manufacture hydrophobic domain rich microbial antigens.