• Title/Summary/Keyword: Molecular Separation

Search Result 485, Processing Time 0.023 seconds

A Study on the Separation of n-Hexane by Molecular Sieve 5A and the Purification for HPLC use (분자체 5A를 이용한 n-헥산의 분리와 HPLC급으로의 정제에 관한 연구)

  • Choi, Beom Suk;Kim, Young Man;Kim, Sun Tae
    • Analytical Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.21-27
    • /
    • 1993
  • Technical grade n-hexane whose purity is 54% has been purified for HPLC use. Methylcyclopentane, 2-methylpentane, and 3-methylpentane which are hardly isolated by fractional distillation were separated by the liquid-solid chromatography using molecular sieve 5A. UV and fluorescence impurities whose contents are critically regulated for HPLC solvent were removed by the adsorptive separation with alumina and silica gel. The present method also reduced the impurities of color(APHA), acidity, water, residue after evaporation, sulfur, and thiophene content, and the impurity contents were well within the specifications of HPLC solvent.

  • PDF

Separation of Aqueous Ethanol Solution Using a PAA-PAN Composite Membrane Through Pervaporation (PAA-PAN 복합막을 이용한 에탄올 수용액의 투과증발 분리)

  • 원장묵;하백현;최호상
    • Membrane Journal
    • /
    • v.6 no.3
    • /
    • pp.182-187
    • /
    • 1996
  • Hydrophilic poly(acrylonitrile) [PAN] membrane with good molecular weight cut-off characteristics were prepared by using the phase inversion method. Permeability and molecular weight cut-off of the membranes were measured through the ultrafiltration test. On the surface of the PAN support membranes, poly(acrylic acid) [PAA] was deposited by dip-coating. The water permeability of the PAN support membrane had $0.17~31\textrm{mm}^3/m^{2} \cdot s \cdot Pa$, the molecular weight cut-off 42, 000~150, 000. The transport characteristics of the prepared composite membranes were significantly affected by the variation of the support membrane mophology. The permeability of the composite membrane was decreased with increasing molecular weight cut-off of the support membrane, and the separation factor was slightly changed depending on the feed concentration.

  • PDF

Review on Zeolite MFI Membranes for Xylene Isomer Separation (제올라이트 MFI 자일렌 분리막 연구 동향)

  • Kim, Donghun
    • Membrane Journal
    • /
    • v.29 no.4
    • /
    • pp.202-215
    • /
    • 2019
  • Molecular sieve membranes separate molecules based on their size and/or shape and have been of high interest, due to their potentially high energy efficiency and high selectivity. Zeolite MFI membrane is one of the most-studied molecular sieve membranes and has affected following studies on other molecular sieve membranes. This review discusses the technical developments on the control of morphology, microstructure, and defect of MFI membranes, which have significantly improved xylene isomer separation performances. These include crystal morphology control, effective secondary growth, seed coating method, crystal orientation control, heteroatom doping, and defect healing method.

Molecular Sieve Properties for $CH_4/CO_2$ of Activated Carbon Fibers Prepared by Benzene Deposition (벤젠 증착에 의해 제조된 활성탄소섬유의 $CH_4/CO_2$ 분자체 성질)

  • Moon, Seung-Hyun;Shim, Jae-Woon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.614-619
    • /
    • 2005
  • The activated carbon fibers of different surface area and pore structures were modified by carbon deposition from the pyrolysis of benzene, in an attempt to obtain carbon molecular sieves of high adsorption capacity and selectivity for the separation of $CO_2/CH_4$ gas mixtures. The ACFs molecular sieves prepared from different temperature and time were tested by the static adsorption of $CO_2$ and $CH_4$ gas, and their pore structures were characterized by the $N_2$ adsorption isotherms. We are able to prepare ACF molecular sieve with good selectivity for $CO_2/CH_4$ separation and showing acceptable adsorption capacities from the change of porosity by carbon deposition of pyrolyzed benzene.

Research and Development Trends of Polyimide Based Material for Gas Separation (기체분리용 폴리이미드 소재의 연구개발동향)

  • Kim, Deuk Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.23 no.6
    • /
    • pp.393-408
    • /
    • 2013
  • Gas separation processes using polymeric membranes have been greatly developed during the last few decades due to high energy efficiency and economic advantages. To achieve optimum economic performance, gas separation membranes required high permeability and selectivity. So, a number of reports examining the various polymeric materials for gas separation membranes have been published. Among the studied materials, polyimide (PI), which exhibit high permselectivity for various gas pairs, high chemical resistance, thermal stability, and mechanical strength, have attracted much attention. This paper focuses on the basic principle of gas separation, preparation procedure of membrane along with the recent developments and research trends of PI based materials for gas separation.

Frit-Inlet Asymmetrical Flow Field-Flow Fractionation (FI-ARIFF): A Stopless Separation Technique for Macromlecules and Nanopariticles

  • Mun, Myeong Hui
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.4
    • /
    • pp.337-348
    • /
    • 2001
  • This article gives an overview of a recently developed channel system, frit-inlet asymmetrical flow field-flow fractionation (FI-AFlFFF), which can be applied for the separation of nanoparticles, proteins, and water soluble polymers. A conventiona l asymmetrical flow FFF channel has been modified into a frit-inlet asymmetrical type by introducing a small inlet frit near the injection point and the system operation of the FI-AFlFFF channel can be made with a great convenience. Since sample components injected into the FI-AFlFFF channel are hydrodynamically relaxed, sample injection and separation processes proceed without interruption of the migration flow. Therefore in FI-AFlFFF, there is no requirement for a valve operation to switch the direction of the migration flow that is normally achieved during the focusing/relaxation process in a conventional asymmetrical channel. In this report, principles of the hydrodynamic relaxation in FI-AFlFFF channel are described with equations to predict the retention time and to calculate the complicated flow variations in the developed channel. The retention and resolving power of FI-AFlFFF system are demonstrated with standard nanospheres and protreins. An attempt to elucidate the capability of FI-AFlFFF system for the separation and size characterization of nanoparticles is made with a fumed silica particle sample. In FI-AFlFFF, field programming can be easily applied to improve separation speed and resolution for a highly retaining component (very large MW) by using flow circulation method. Programmed FI-AFlFFF separations are demonstrated with polystyrene sulfonate standards and pululans and the dynamic separation range of molecular weight is successfully expanded.

Molecular Modeling of the Chiral Recognition of Propranolol Enantiomers by a β-Cyclodextrin

  • Kim, Hyun-myung;Jeong, Karp-joo;Lee, Sang-san;Jung, Seun-ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.95-98
    • /
    • 2003
  • Enantioselectivity of the propranolol on β-cyclodextrin was simulated by molecular modeling. Monte Carlo (MC) docking and molecular dynamics (MD) simulations were applied to investigate the molecular mechanism of enantioselective difference of both enantiomeric complexes. An energetic analysis of MC docking simulations coupled to the MD simulations successfully explains the experimental elution order of propranolol enantiomers. Molecular dynamics simulations indicate that average energy difference between the enantiomeric complexes, frequently used as a measure of chiral recognition, depends on the length of the simulation time. We found that, only in case of much longer MD simulations, noticeable chiral separation was observed.

Avantor® ACE® Wide Pore HPLC Columns for the Separation and Purification of Proteins in Biopharmaceuticals (바이오의약품의 단백질 분리 및 정제를 위한 Avantor® ACE® 와이드 포어 HPLC 컬럼 가이드)

  • Matt James;Mark Fever;Tony Edge
    • FOCUS: LIFE SCIENCE
    • /
    • no.1
    • /
    • pp.3.1-3.7
    • /
    • 2024
  • The article discusses the critical role of chromatography in the analysis and purification of proteins in biopharmaceuticals, emphasizing the importance of comprehensive characterization for ensuring their safety and efficacy. It highlights the use of Avantor® ACE® HPLC columns for the separation and purification of proteins, focusing on the analysis of intact proteins using reversed-phase liquid chromatography (RPLC) with fully porous particles. This article also details the application of different mobile phase additives, such as TFA and formic acid, and emphasizes the advantages of using type B ultra-pure silica-based columns for efficiency and peak shape in biomolecule analysis. Additionally, it addresses the challenges of analyzing intact proteins due to slow molecular diffusion and introduces the concept of solid-core (or superficially porous) particles, emphasizing their benefits over traditional porous particles for the analysis of therapeutic proteins. Furthermore, it discusses the development of Avantor® ACE® UltraCore BIO columns, specifically designed for the high-efficiency separation of large biomolecules, such as proteins, and demonstrates their effectiveness in achieving high-resolution separations, even for higher molecular weight proteins like monoclonal antibodies (mAbs). In addition, it underscores the complexity of analyzing and characterizing intact protein biopharmaceuticals, requiring a range of analytical techniques and the use of wide-pore stationary phases, operated at elevated temperatures and with relatively shallow gradients. It highlights the comprehensive range of options offered by Avantor® ACE® wide pore columns, including both fully porous and solid-core particles, bonded with a variety of complementary stationary phase chemistries to optimize selectivity during method development. The use of ultrapure and highly inert base silica is emphasized for enabling the use of lower concentrations of mobile phase modifiers without compromising analyte peak shape, particularly beneficial for LC-MS applications. Then the article concludes by emphasizing the significance of reversed-phase liquid chromatography and its compatibility with mass spectrometry as a valuable tool for the separation and analysis of intact proteins and their closely related variants in biopharmaceuticals.

  • PDF