• 제목/요약/키워드: Molecular Polarity

검색결과 82건 처리시간 0.025초

용매 극성도의 이론적 예측 연구 (An ab Initio Predictive Study on Solvent Polarity)

  • 박민규;조수경
    • 한국군사과학기술학회지
    • /
    • 제11권3호
    • /
    • pp.154-160
    • /
    • 2008
  • We investigated molecular polarity by using theoretical means and comparing empirical solvent polarity. Our approach employed electrostatic potentials at the molecular surface calculated by density functional methods. A number of molecular descriptors related to molecular polarities were computed from molecular surface electrostatic potentials. Among computed molecular descriptors, the most positive electrostatic potential provided the best correlation with the empirical solvent polarities. A regression equation was developed in order to predict molecular polarities of molecules whose experimental solvent polarities were unknown. The new regression equations were utilized in estimating solvent polarities of cubane derivatives which are considered important precusors of high-energy density meterials.

계면공학에 기초한 우르차이트 결정의 극성 조절 (Polarity Control of Wurtzite Crystal by Interface Engineering)

  • 홍순구;쓰즈키 타쿠마;미네기쉬 쯔토무;조명환;야오 타카푸미
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.95-96
    • /
    • 2005
  • The general method and mechanism for the polarity control of heteroepitaxial wurtzite films, such as ZnO and GaN, by interface engineering via plasma-assisted molecular beam epitaxy are addressed. We proposed the principle and method controlling the crystal polarity of ZnO on GaN and GaN on ZnO. The crystal polarity of the lower film was maintained by forming a heterointerfce without any interface layer between the upper and the lower layers. However the crystal polarity could be changed by forming the heterointerface with the interface layer having an inversion center. The principle and method suggested here give us a promising tool to fabricate polarity inverted heterostructures, which applicable to invent novel heterostructures and devices.

  • PDF

MOLECULAR ORIENTATIONS OF INTRAMOLECULAR CHARGE TRANSFER AROMATIC MOLECULES IN THE ORGANIZED MEDIA

  • Shin, Dong Myung
    • Journal of Photoscience
    • /
    • 제1권1호
    • /
    • pp.53-59
    • /
    • 1994
  • Molecular orientation and polarity of solubilization site of dipolar azobenzenes solubilized in micellar solutions are discussed. The polarity of solubilization was estimated by using Taft $\pi$$^*$ scale with linear solvation energy relationship, $\Delta$E=$\Delta$E$_0$ + S($\pi$$^*$ + d$\delta$)+a$\alpha$ + b$\beta$. Hydrogen bonding effects were taken into account for the estimation of micropolarity. The polarity that azobenzenes experienced in the miceliar solutions was close to water which represented that the azobenzenes were mostly solubilized at the interface. For the orientations of azobenzenes were concerned, the nitro group of NPNOH faced the interface and the hydroxy group of NPNO$^-$ located at the interfacial area.

  • PDF

Surface Polarity Dependent Solid-state Molecular Biological Manipulation with Immobilized DNA on a Gold Surface

  • Lee, Jiyoung;Kim, Jeong Hee
    • International Journal of Oral Biology
    • /
    • 제37권4호
    • /
    • pp.181-188
    • /
    • 2012
  • As the demand for large-scale analysis of gene expression using DNA arrays increases, the importance of the surface characterization of DNA arrays has emerged. We compared the efficiency of molecular biological applications on solid-phases with different surface polarities to identify the most optimal conditions. We employed thiol-gold reactions for DNA immobilization on solid surfaces. The surface polarity was controlled by creating a self-assembled monolayer (SAM) of mercaptohexanol or hepthanethiol, which create hydrophilic or hydrophobic surface properties, respectively. A hydrophilic environment was found to be much more favorable to solid-phase molecular biological manipulations. A SAM of mercaptoethanol had the highest affinity to DNA molecules in our experimetns and it showed greater efficiency in terms of DNA hybridization and polymerization. The optimal DNA concentration for immobilization was found to be 0.5 ${\mu}M$. The optimal reaction time for both thiolated DNA and matrix molecules was 10 min and for the polymerase reaction time was 150 min. Under these optimized conditions, molecular biology techniques including DNA hybridization, ligation, polymerization, PCR and multiplex PCR were shown to be feasible in solid-state conditions. We demonstrated from our present analysis the importance of surface polarity in solid-phase molecular biological applications. A hydrophilic SAM generated a far more favorable environment than hydrophobic SAM for solid-state molecular techniques. Our findings suggest that the conditions and methods identified here could be used for DNA-DNA hybridization applications such as DNA chips and for the further development of solid-phase genetic engineering applications that involve DNA-enzyme interactions.

Artificial Neural Network Prediction of Normalized Polarity Parameter for Various Solvents with Diverse Chemical Structures

  • Habibi-Yangjeh, Aziz
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권9호
    • /
    • pp.1472-1476
    • /
    • 2007
  • Artificial neural networks (ANNs) are successfully developed for the modeling and prediction of normalized polarity parameter (ETN) of 216 various solvents with diverse chemical structures using a quantitative-structure property relationship. ANN with architecture 5-9-1 is generated using five molecular descriptors appearing in the multi-parameter linear regression (MLR) model. The most positive charge of a hydrogen atom (q+), total charge in molecule (qt), molecular volume of solvent (Vm), dipole moment (μ) and polarizability term (πI) are input descriptors and its output is ETN. It is found that properly selected and trained neural network with 192 solvents could fairly represent the dependence of normalized polarity parameter on molecular descriptors. For evaluation of the predictive power of the generated ANN, an optimized network is applied for prediction of the ETN values of 24 solvents in the prediction set, which are not used in the optimization procedure. Correlation coefficient (R) and root mean square error (RMSE) of 0.903 and 0.0887 for prediction set by MLR model should be compared with the values of 0.985 and 0.0375 by ANN model. These improvements are due to the fact that the ETN of solvents shows non-linear correlations with the molecular descriptors.

환경친화적인 극성기유와 첨가제(TCP)의 상호작용모델로부터 해석된 Polyalkylene glycol 및 Polyolester Base Oil의 윤활작용 (Lubricating Performance of Polyalkylene Glycol and Polyolester Base Oils analyzed from the Model of Interaction between Environmentally adapted Polar base oils and Additive (TCP))

  • 한두희
    • Tribology and Lubricants
    • /
    • 제17권2호
    • /
    • pp.146-152
    • /
    • 2001
  • Environmentally adapted synthetic base oils of polyalkylene glycols (PAGs) and polyol esters (POEs) show a high polarity because of their functional groups containing oxygen atom. The lubricating performance of these polar base oils was investigated by using a four-ball tribometer under boundary lubrication condition. Four polyalkylene glycols and five polyol ester base oils were used as sample base oils of high polarity. A mineral oil (MO) and alkylnaphthalene (AN) were used as low polarity base oils. Tricrecylphosphate (TCP) was added to all the base oils, in the range of 10 mmol/L-2000 mmol/L, as an antiwear additive. All the TCP-for-mutated base oils showed optimum concentration characteristics for minimizing wear. The order of optimum concentration of all the base oils was in a good accordance with the order of relative stability of TCP in base oils. The interaction model on solvation between additive and different polar base oils can expect the stability order of TCP. Thus, the model on solvation can explain well the order of optimum concentration of all the base oils, by using the effect of polarity (dielectric constant, $\varepsilon$) and molecular size (molecular weight, MW) of them on stability of TCP in polar base oils. Finally, a good correlation of the optimum concentration for all the base oils was obtained when it was arranged as a function of C∝(M $W_{Base Oil}$/M $W_{TCP}$)$^{-2}$.71/.($\varepsilon$$_{Base Oil}$)$^{3.38}$ by these two parameters.s..

Solvent Effects on the Solvatochromism of 7-Aminocoumarin Derivatives in Neat and Binary Solvent Mixtures: Correlation of the Electronic Transition Energies with the Solvent Polarity Parameters

  • Choi, Jin-Yeong;Park, Eun-Ju;Chang, Seung-Hyun;Kang, Tai-Jong
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권7호
    • /
    • pp.1452-1458
    • /
    • 2009
  • The change in the electronic absorption and emission energy of 7-aminocoumarin derivatives in binary solvent mixtures has been studied. The electronic transition energy along with the Stokes' shift is correlated with the orientation polarizability of the solvent as well as the empirical solvent polarity parameters $E_T$ (30). It is observed that the emission peak shift traces the change of $E_T$ (30) value very closely in binary solvent mixtures. The emission transition more strongly depends on the solvent polarity than the absorption, which indicates the dipole moment gets larger on excitation. From the dependence of the Stokes’ shift of 7-aminocoumarins with the solvent polarity parameters and the ground state dipole moment obtained by the semi-empirical calculations, the excited state dipole moment was estimated. The fluorescence lifetime change of 7-aminocoumarins in binary solvent mixtures was measured and the results are explained in terms of molecular conformation and solvent polarity. The study indicates the empirical solvent polarity $E_T$ (30) is a good measure of microscopic solvent polarity and it probes in general the non-specific solvent interactions.

Dishevelling Wnt and Hippo

  • Kim, Nam Hee;Lee, Yoonmi;Yook, Jong In
    • BMB Reports
    • /
    • 제51권9호
    • /
    • pp.425-426
    • /
    • 2018
  • As highly conserved signaling cascades of multicellular organisms, Wnt and Hippo pathways control a wide range of cellular activities, including cell adhesion, fate determination, cell cycle, motility, polarity, and metabolism. Dysregulation of those pathways are implicated in many human diseases, including cancer. Similarly to ${\beta}-catenin$ in the Wnt pathway, the YAP transcription co-activator is a major player in Hippo. Although the intracellular dynamics of YAP are well-known to largely depend on phosphorylation by LATS and AMPK kinases, the molecular effector of YAP cytosolic translocation remains unidentified. Recently, we reported that the Dishevelled (DVL), a key scaffolding protein between canonical and non-canonical Wnt pathway, is responsible for nuclear export of phosphorylated YAP. The DVL is also required for YAP intracellular trafficking induced by E-cadherin, ${\alpha}-catenin$, or metabolic stress. Note that the p53/LATS2 and LKB1/AMPK tumor suppressor axes, commonly inactivated in human cancer, govern the reciprocal inhibition between DVL and YAP. Conversely, loss of the tumor suppressor allows co-activation of YAP and Wnt independent of epithelial polarity or contact inhibition in human cancer. These observations provide novel mechanistic insight into (1) a tight molecular connection merging the Wnt and Hippo pathways, and (2) the importance of tumor suppressor contexts with respect to controlled proliferation and epithelial polarity regulated by cell adhesion.

잎의 발생과정에 있어서의 극성제어 (Regulation of Leaf Polarity during Leaf Development)

  • 조규형;전상은;;김경태
    • 식물분류학회지
    • /
    • 제38권1호
    • /
    • pp.51-61
    • /
    • 2008
  • 잎은 무한생장기관으로 잎의 극성제어에 많은 유전적인 요소가 필요하다. 이들 극성은 잎의 초기발생과정에서 제어되기 시작하고, 정단분열조직과 잎기관의 원기와의 제어를 담당하는 인자들에 의해서 결정이 된다. 본 연구에서는 가늘고 바늘처럼 생긴 잎을 가진 deformed root and leaf1 (drl1) 돌연변이체를 유전학적 해석하였고, 그 결과 DRL1 유전자는 정단분열조직과 잎의 극성축을 제어하고 있는 것으로 판명되었다. 이 DRL1 유전자는 효모의 KTI12 유전자 산물과 유사한 단백질인 Elongator associate protein을 만들어 내는 것으로 판명되었다. 또한, 이 단백질의 아미노산 서열이 원핵생물에서부터 진핵생물까지 광범위하게 진화적으로 보존되고 있는 것으로 밝혀졌다. 특히, DRL1 단백질과 유사한 식물의 단백질은 계통해석 결과 단일계통을 나타내고 있는 것으로 나타났고, 이는 이 단백질들이 육상식물의 진화과정에서 잘 보존되고 있음을 시사하고 있다.

Control of asymmetric cell division in early C. elegans embryogenesis: teaming-up translational repression and protein degradation

  • Hwang, Sue-Yun;Rose, Lesilee S.
    • BMB Reports
    • /
    • 제43권2호
    • /
    • pp.69-78
    • /
    • 2010
  • Asymmetric cell division is a fundamental mechanism for the generation of body axes and cell diversity during early embryogenesis in many organisms. During intrinsically asymmetric divisions, an axis of polarity is established within the cell and the division plane is oriented to ensure the differential segregation of developmental determinants to the daughter cells. Studies in the nematode Caenorhabditis elegans have contributed greatly to our understanding of the regulatory mechanisms underlying cell polarity and asymmetric division. However, much remains to be elucidated about the molecular machinery controlling the spatiotemporal distribution of key components. In this review we discuss recent findings that reveal intricate interactions between translational control and targeted proteolysis. These two mechanisms of regulation serve to carefully modulate protein levels and reinforce asymmetries, or to eliminate proteins from certain cells.