• Title/Summary/Keyword: Molecular Orbital Calculations

Search Result 104, Processing Time 0.027 seconds

Quantum-chemical Study of Effects of Alkoxy Substitution on the Conformations and Electronic Properties of Poly(p-phenylenevinylenes)

  • Hong, Sung Y.
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.42-48
    • /
    • 1999
  • We have performed a quantum-chemical investigation on the conformations and electronic properties of a variety of methoxy-substituted poly(p-phenylenevinylenes) (PPVs) to elucidate the effects of alkoxy substitution. Geometrical parameters for the polymers were fully optimized through Austin Model I (AM I) semi-empirical Hartree-Fock (HF) band calculations. Electronic properties of the polymers were obtained by applying the AM I optimized structures to the modified extended Huckel method. To confirm validity of the AM I conformational results, we also carried out ab initio HF calculations with the 6-31G (d) basis set for a variety of methoxy-substituted divinylbenzenes. It is found that the potential energy surfaces of alkoxy-substituted PPVs are quite shallow around the planar conformations, suggesting that the prepared films possess a variety of conformations with different torsion angle in the solid state, depending on the synthetic conditions. When two alkoxy groups are concurrently substituted at the adjacent sites in the phenylene ring, these groups are subject to rotating around the C(sp2)-O bonds by 70-80° to avoid the strong steric repulsion between them. Consequently, the overlap between the π-type p orbital of oxygen and the π molecular orbitals of the polymer decreases. This leads to a wide gap and a high oxidation potential for tetramethoxy-substituted PPV, compared to those of dialkoxy-substituted PPV.

Electronic Structure and Properties of High-$T_c$ Substitued YBCO Superconductor: Ⅱ. MO Calculations on Charged Cluster Models Relating to High-$T_c$ Se-Substituted YBCO Superconductors

  • Lee, Kee-Hag;Lee, Wang-Ro;Choi, U-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.7
    • /
    • pp.545-549
    • /
    • 1994
  • Using the extended Hackel molecular orbital method in connection with the tight binding model, we have studied electronic structure and related properties of the charged cluster models relating to superconducting $YBa_{2}Cu_{3}O_{7-x}$, crystals in which O-atoms in regular sites were selectively replaced with Se atoms. In analogy to the isomorphism problem with molecules, we discuss all possible combinations of Se-substitutions in O-sites with one, two, and four Se atoms. The calculations are carried out within charged cluster models for analogues of YBa-copper oxide. Our results suggest that the electronic structure of the symmetrically Se-substituted or Se-added compound is closer to that of the YBCO superconducting compound than that obtained from the unsymmetrical substitution. This applies in particular if O is replaced with Se around the Cu(1) site. Symmetrical substitutions in the $CuO_2$ layers give rise to large variations in the electronic structure of $YBa_{2}Cu_{3}O_{7}$. This is consistent with the fact that superconductivity is very sensitive to the electronic population of the $CuO_2$ layers.

Molecular Orbital Calculations for the Formation of GaN Layers on Ultra-thin AlN/6H-SiC Surface Using Alternating Pulsative Supply of Gaseous Trimethyl Gallium (TMG) and NH$_3$

  • Seong, Si Yeol;Hwang, Jin Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.2
    • /
    • pp.154-158
    • /
    • 2001
  • The steps for the generation of very thin GaN films on ultrathin AlN/6H-SiC surface by alternating a pulsative supply (APS) of trimethyl gallium and NH3 gases have been examined by ASED-MO calculations. We postulate that the gallium cul ster was formed with the evaporation of CH4 gases via the decomposition of trimethyl gallium (TMG), dimethyl gallium (DMG), and monomethyl galluim (MMG). During the injection of NH3 gas into the reactor, the atomic hydrogens were produced from the thermal decomposition of NH3 molecule. These hydrogen gases activated the Ga-C bond cleavage. An energetically stable GaN nucleation site was formed via nitrogen incorporation into the layer of gallium cluster. The nitrogen atoms produced from the thermal degradation of NH3 were expected to incorporate into the edge of the gallium cluster since the galliums bind weakly to each other (0.19 eV). The structure was stabilized by 2.08 eV, as an adsorbed N atom incorporated into a tetrahedral site of the Ga cluster. This suggests that the adhesion of the initial layer can be reinforced by the incorporation of nitrogen atom through the formation of large grain boundary GaN crystals at the early stage of GaN film growth.

Electronic state calculation of ceramics by $DV-X\;{\alpha}$ cluster method

  • Adachi, Hirohiko
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1994.11a
    • /
    • pp.1-1
    • /
    • 1994
  • ;The electronic state calculations for various types of ceramic materials have beell performed by the use of $DV-X\;{\alpha}$ cluster method. The molecular orbital levels and wave functions for model clusters have been computed to study the electronic properties ami chemical bonding of the ceramics. For ${\beta}-sialon(Si_{6-z}Al_zO_zN_{8-z})$ which is a high temperature structural material based on ${\beta}-Si_3N_4$, we have made model cluster calculations to estimate the strength of chemical bonding between atoms by the Mulliken population analysis. It is found that the covalent bonding between Si and N atoms is very strong in pure ${\beta}-Si_3N_4$, but the covalency around solute atom is considerably weakened when Si atom is substituted by AI. This tendency is enhanced by an additional substitution of oxygen atom for N. The result calculated can well explain the experimental data of changes in mechanical properties such as the reductions of Young's modulus and Vickers hardness with increment of z-value in ${\beta}-sialon$. Various model clusters for transition metal oxides which show many interesting physical and chemical properties have also been calculated. High-valent perovskite-type iron oxides EMFe0_3E(M=Ca and Sr) possess very interesting magnetic and chemical properties. In these oxides, iron exists as $Fe^{4+}$ state, but the experimental measurement of Mossba~er effect suggests that disproportionation $2Fe^{4+}=Fe^{3+}+Fe^{5+}$ takes place for $CaFe0_3$ at low temperatures. The model cluster calculations for these compounds indicated the existence of considerably strong covalent bonding of Fe-O. The calculations of hyperfine interaction at iron neucleus show very good agreement with the experimental Mossbauer measurements. The result calculated also implies that the disproportionation reaction is strongly possible by assuming the quenching of breathing phonon mode at low temperatures.tures.

  • PDF

A study on the prediction of the mechanical properties of Zinc alloys using DV-Xα Molecular Orbital Method (DV-Xα분자궤도법을 이용한 Zn alloy의 기계적 성질 예측)

  • Na, H.S.;Kong, J.P.;Kim, Y.S.;Kang, C.Y.
    • Korean Journal of Materials Research
    • /
    • v.17 no.5
    • /
    • pp.250-255
    • /
    • 2007
  • The alloying effects on the electronic structures of Zinc are investigated using the relativistic $DV-X{\alpha}molecular$ orbital method in order to obtain useful information for alloy design. A new parameter which is the d obital energy level(Md) and the bonder order(Bo) of alloying elements in Zinc was introduced and used for prediction of the mechanical properties. The Md correlated with the atomic radius and the electronegativity of elements. The Bo is a measure of the strength of the covalent bond between M and X atoms. First-principles calculations of electronic structures were performed with a series of models composed of a MZn18 cluster and the electronic states were calculated by the discrete variational- $X{\alpha}method$ by using the program code SCAT. The central Zinc atom(M) in the cluster was replaced by various alloying elements. In this study energy level structures of pure Zinc and alloyed Zinc were calculated. From calculated results of energy level structures in MZn18 cluster, We found Md and Bo values for various elements of Zn. In this work, Md and Bo values correlated to the tensile strength for the Zn. These results will give some guide to design of zinc based alloys for high temperature applications and it is possible the excellent alloys design.

Influence of Jahn-Teller Distortion on the Magnetic Coupling in Oxalato-Bridged Copper(II) Dimers: An Orbital Interpretation of the Superexchange Mechanism

  • Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.12
    • /
    • pp.1965-1968
    • /
    • 2005
  • Extended H$\ddot{u}$ckel molecular calculations have been used to analyze how the magnitude of exchange coupling is influenced by the structural distortions in a series of dinuclear six-coordinate copper(II) complexes bridged by the planar bis-bidentate oxalate anion. Copper(II) ions have distorted octahedral surroundings, one being axially elongated and the other compressed. The magnetic interaction is strong in the former complexes and very weak in the latter. This is interpreted as resulting from a switching of magnetic spin orbitals due to the structural distortions (bond elongation or compression) of the copper sites.

An MO Theoretical Studies on Conformations of Methyl and Ethyl Chanoacetates

  • Lee, Ikchoon;Kim, Jik-Tae;Kim, Ui-Rak
    • Nuclear Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.155-159
    • /
    • 1974
  • The extended Huckel molecular orbital calculations have been carried out on rotamers of methyl and ethyl cyanoacetates. Results show that cis orientation of C≡N group is favored while for $CH_3$group trans orientation is favored. The major part of the stabilization energies can be accounted for by the electrostatic energies between the atoms involved.

  • PDF

Electronic State of ZnO doped with Al, Ga and In, Calculated by Density Functional Theory (범함수궤도법을 이용하여 계산한 Al, Ga, In이 도핑된 ZnO의 전자상태)

  • Lee, Dong-Yoon;Lee, Won-Jae;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.218-221
    • /
    • 2004
  • The electronic state of ZnO doped with Al, Ga and In, which belong to III family elements in periodic table, was calculated using the density functional theory. In this study, the program used for the calculation on theoretical structures of ZnO and doped ZnO was Vienna Ab-initio Simulation Package (VASP), which is a sort of pseudo potential method. The detail of electronic structure was obtained by the describe variational $X{\alpha}(DV-X{\alpha})$(DV-Xa) method, which is a sort of molecular orbital full potential method. The optimized crystal structures obtained by calculations were compared to the measured structure. The density of state and energy levels of dopant elements was shown and discussed in association with properties.

  • PDF

The Preferred Conformation of the Muscarinic Agent L(+) Acetyl-${\beta}$-Methylcholine

  • Jhon, Mu-Shik;Cho, Ung-In;Chae, Yung-Bog;Kier, Lemont B.
    • Journal of the Korean Chemical Society
    • /
    • v.16 no.2
    • /
    • pp.70-73
    • /
    • 1972
  • It has been postulated that acetylcholine exhibits both nicotine and muscarinic activity because of its ability to present two patterns of essential atoms to the receptors. These two patterns arise from the ability of the molecule to exist in more than one preferred conformation. The molecule S(+)-acetyl-${\beta}$-methylacetylcholine exhibits only muscarinic activity. Calculations using molecular orbital theory predict that this molecule prefers only the muscarinic conformation. This is offered as an explanation for the exclusive role of the molecule and as evidence supporting the twoconformation, two-activities hypothesis.

  • PDF

The Electronic Structure of Interaction Platinum(Ⅱ) with DNA bases, Adenine, Guanine, and Cytosine (Platinum(Ⅱ) Complex와 DNA bases인 Adenine, Guanine 그리고 Cytosine의 Interaction에 대한 전자구조)

  • Kim, Ui Rak;Kim, Sang Hae;Edward A. Boudreaux
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.539-547
    • /
    • 1990
  • Molecular Orbital calculations using the SC-MEH method have been carried out for the interaction of Adenine, Guanine and Cytosine as DNA base and diaminecytosineplatinum(DCP) in various conformations. The results showed that the order of DCP binding to the DNA bases was guanine > adenine > cytosine and the stabilization energy of cis-isomer was larger than that of trans-isomer in the adenine-DCP complexes system. Furthermore, platinum(II) binding to DNA bases markedly gives rise to change of atomic charge in DNA bases ring, which can explain anti-tumor activity of platinum complex.

  • PDF