• 제목/요약/키워드: Molecular Mechanics

Search Result 147, Processing Time 0.023 seconds

Study on Rate Dependent Fracture Behavior of Structures; Application to Brittle Materials Using Molecular Dynamics (구조물의 속도 의존적 파괴 특성에 대한 연구; 입자동역학을 이용한 취성재료에의 적용)

  • Kim, Kunhwi;Lim, Jihoon;Llim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.529-536
    • /
    • 2008
  • The failure behavior of structures is changed under different loading rates, which might arise from the rate dependency of materials. This phenomenon has been focused in the engineering fields. However, the failure mechanism is not fully understood yet, so that it is hard to be implemented in numerical simulations. In this study, the numerical experiments to a brittle material are simulated by the Molecular Dynamics (MD) for understanding the rate dependent failure behavior. The material specimen with a notch is modeled for the compact tension test simulation. Lennard-Jones potential is used to describe the properties of a brittle material. Several dynamic failure features under 6 different loading rates are achieved from the numerical experiments, where remarkable characteristics such as crack roughness, crack recession/arrest, and crack branching are observed during the crack propagation. These observations are interpreted by the energy inflow-consumption rates. This study will provides insight about the dynamic failure mechanism under different loading rates. In addition, the applicability of the MD to the macroscopic mechanics is estimated by simulating the previous experimental research.

Effect of structural voids on mesoscale mechanics of epoxy-based materials

  • Tam, Lik-ho;Lau, Denvid
    • Coupled systems mechanics
    • /
    • v.5 no.4
    • /
    • pp.355-369
    • /
    • 2016
  • Changes in chemical structure have profound effects on the physical properties of epoxy-based materials, and eventually affect the durability of the entire system. Microscopic structural voids generally existing in the epoxy cross-linked networks have a detrimental influence on the epoxy mechanical properties, but the relation remains elusive, which is hindered by the complex structure of epoxy-based materials. In this paper, we investigate the effect of structural voids on the epoxy-based materials by using our developed mesoscale model equipped with the concept of multiscale modeling, and SU-8 photoresist is used as a representative of epoxy-based materials. Developed from the results of full atomistic simulations, the mesoscopic model is validated against experimental measurements, which is suitable to describe the elastic deformation of epoxy-based materials over several orders of magnitude in time- and length scales. After that, a certain quantity of the structure voids is incorporated in the mesoscale model. It is found that the existence of structural voids reduces the tensile stiffness of the mesoscale epoxy network, when compared with the case without any voids in the model. In addition, it is noticed that a certain number of the structural voids have an insignificant effect on the epoxy elastic properties, and the mesoscale model containing structural voids is close to those found in real systems.

Stereoselective Ligand Exchange Reaction of trans-dichlorocobalt(III) complex contained SS-epm and racemi propane-1,2-diamine (SS-epm이 배위된 trans-dichlorocobalt(III) 착물과 라세미 propane-1,2-diamine과의 입체선택적 리간드 치환반응)

  • Kim, Dong-Yeub
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.1
    • /
    • pp.77-82
    • /
    • 2000
  • The stereoselective ligand exchange reaction of trans-$[Co(SS-epm)Cl_2]^+$ and racemic propane-1,2-diamine (rac-pn) produces the complex that is identified as $[CO(N)_6]^{3+}$ type of $[Co(SS-epm)(pn)]^{3+}$ by absorption spectrum. It is conceivable that the reaction mechanism involves substitution and isomerization. The calculated and experimentally determined ratios of the complexed enantiomeric substrates at equilibrium were as follows: $[Co(SS-epm)(pn)]^{3+}$,calcd 32 % / 68 %, exptl 19 % / 81 % R-pn / S-pn. It has been shown that the employment of molecular mechanics calculations as a predictive tool may lead to the design of chiral complexes that may be applied to the separation of racemic mixtures of simple bidentate ligands.

  • PDF

Finite Element Modeling of a Carbon Nanotube Actuator (탄소나노튜브 엑츄에이터의 설계에서의 유한요소모델링 기법)

  • 김정택;현석정;김철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.559-562
    • /
    • 2004
  • Carbon nanotube is a geometrical frame-like structure and the primary bonds between two nearest-neighboring atoms act like beam members, whereas an individual atom acts as the joint of the related beam members. The sectional property parameters of these beam members are obtained from molecular mechanics. Computations of the elastic deformation of single-walled carbon nanotubes reveal that the Young's moduli of carbon nanotubes vary with the tube diameter and are affected by their helicity. With increasing tube diameter, the Young's moduli of carbon nanotubes approach the Young's modulus of graphite.

  • PDF

Mechanics behind Breast Cancer Prevention - Focus on Obesity, Exercise and Dietary Fat

  • Alegre, Melissa Marie;Knowles, McKay Hovis;Robison, Richard A.;O'Neill, Kim Leslie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2207-2212
    • /
    • 2013
  • Cancer prevention is rapidly emerging as a major strategy to reduce cancer mortality. In the field of breast cancer, significant strides have recently been made in the understanding of underlying preventive mechanisms. Currently, three major strategies have been linked to an increase in breast cancer risk: obesity, lack of physical exercise, and high levels of saturated dietary fat. As a result, prevention strategies for breast cancer are usually centered on these lifestyle factors. Unfortunately, there remains controversy regarding epidemiological studies that seek to determine the benefit of these lifestyle changes. We have identified crucial mechanisms that may help clarify these conflicting studies. For example, recent reports with olive oil have demonstrated that it may influence crucial transcription factors and reduce breast tumor aggressiveness by targeting HER2. Similarly, physical exercise reduces sex hormone levels, which may help protect against breast cancer. Obesity promotes tumor cell growth and cell survival through upregulation of leptin and insulin-like growth factors. This review seeks to discuss these underlying mechanisms, and more behind the three major prevention strategies, as a means of understanding how breast cancer can be prevented.

Slipchip Device Development in Molecular Diagnostics

  • Qingtian Yin;Huiwen Bai;Ruijie Li;Youngung Seok
    • Korean Journal of Materials Research
    • /
    • v.34 no.2
    • /
    • pp.63-71
    • /
    • 2024
  • Slipchip offers advantages such as high-throughout, low cost, and simple operation, and therefore, it is one of the technologies with the greatest potential for high-throughput, single-cell, and single-molecule analyses. Slipchip devices have achieved remarkable advances over the past decades, with its simplified molecular diagnostics gaining particular attention, especially during the COVID-19 pandemic and in various infectious diseases scenarios. Medical testing based on nucleic acid amplification in the Slipchip has become a promising alternative simple and rapid diagnostic tool in field situations. Herein, we present a comprehensive review of Slipchip device advances in molecular diagnostics, highlighting its use in digital recombinase polymerase amplification (RPA), loop-mediated isothermal amplification (LAMP), and polymerase chain reaction (PCR). Slipchip technology allows users to conduct reliable droplet transfers with high-throughput potential for single-cell and molecule analyses. This review explores the device's versatility in miniaturized and rapid molecular diagnostics. A complete Slipchip device can be operated without special equipment or skilled handling, and provides high-throughput results in minimum settings. This review focuses on recent developments and Slipchip device challenges that need to be addressed for further advancements in microfluidics technology.

THEORETICAL ANALYSIS ON THE PHOTOCHEMISTRY OF COUMARIN DERIVATIVES

  • Kim, Ja-Hong;Sohn, Sung-Ho;Kim, Jung-Sung
    • Journal of Photoscience
    • /
    • v.2 no.2
    • /
    • pp.95-98
    • /
    • 1995
  • The photodimers with cyclobutane rings and C$_2$ symmetry, derived from coumarin (syn, head to tail and anti, head to head) have been calculated by PM3-UHF-CI and Molecular Mechanics force field. The photocycloaddition to coumarin and 5,7-dimethoxycoumarin(DMC) dimers were deduced to be formed by their preferable frontier orbital interactions and via more stable cycloaddition by the C$_3$, C$_4$ bond. These results are consistent with the coumarin dimer model that the theoretical C$_4$-photocyclodimer of coumarin is predicted much more than the experimental C$_4$-photocyclodimer.

  • PDF

컴퓨터를 이용한 분자모델링

  • 김용호
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.11a
    • /
    • pp.105-110
    • /
    • 1994
  • 분자 모델링은 Molecular Mechanics 라는 empirical force field를 사용하여 여러 가지 분자들의 3차원적 구조를 구하고, 이로부터 이 분자들의 물리적, 화학적 성질들을 계산하고, Computer Graphics를 사용하여 형상화하는 전반적인 연구활동을 의미한다. 이러한 연구활동의 출발점은 실제의 분자와 가장 가까운 3차원적 분자구조를 얻는 것이다. 여러 가지 가능한 방법을 통하여(양자역학적 계산 혹은 X-ray Database 검색등) 최적의 구조를 얻은 후, 이 구조를 사용하여 관심 있는 여러가지 물리적, 화학적 성질들을 계산할 때, 비로소 실험결과를 설명할 수 있게 되고, 이를 토대로 하여 새로운 분자의 Design 이 가능할 수 있을 것이다.

  • PDF

THEORETICAL STUDIES ON THE PHOTOCHEMISTRY OF PYRAZINYLQUINOXALINYLETHYLENE

  • Kim, Ja-Hong;Sohn, Sung-Ho;Hong, Sung-Wan
    • Journal of Photoscience
    • /
    • v.5 no.2
    • /
    • pp.69-71
    • /
    • 1998
  • Electronic structures and excited states for pyrazinylquinoxalinylethylene are investigated using PM3-UHF-CI and Molecular Mechanics force field. The results indicate that pyrazinylquinoxalinylethylene has extensively mixed ($\pi$, $\pi$$^*$) and (n, $\pi$$^*$) states while the (n, $\pi$$^*$) transition band does not appear in the absorption spectrum clearly and seems to be submerged under the more intense ($\pi$, $\pi$$^*$) bands.

  • PDF

The Dynamical Models of the Life Action on the Assimilation and Dissimilation in the Ecosystem (생태계에 있어서 동화.이화작용에 관한 동력학적 모델)

  • 장남기
    • Asian Journal of Turfgrass Science
    • /
    • v.10 no.4
    • /
    • pp.331-339
    • /
    • 1996
  • The mass action on the assimilation and dissimilation of a living system from bio-molecules to bio-spheres has been demonstrated by the theoretical models as the bio- and trophic-functions From the viewpoint of this bio-mechanics, the general principle on the pre-equilibrium of the bio-molecular system is found. Key words: Mass action, Living system, Bio-molecule, Bio-sphere, Bio- and trophic function.

  • PDF