• Title/Summary/Keyword: Molecular Flow

Search Result 890, Processing Time 0.029 seconds

Genetic Diversity and Population Structure of Liriope platyphylla (Liliaceae) in Korea (한국내 맥문동의 유전적 다양성과 집단 구조)

  • Huh, Hong-Wook;Choi, Joo-Soo;Lee, Bok-Kyu;Huh, Man-Kyu
    • Journal of Life Science
    • /
    • v.17 no.3 s.83
    • /
    • pp.328-333
    • /
    • 2007
  • Genetic diversity and population structure of eleven Liriope platyphylla (Liliaceae) populations in Korea were determined using genetic variation at 20 allozyme loci. The percent of polymorphic loci within the enzymes was 55.9%. Genetic diversity at the species level and at the population level was high(Hes = 0.178; Hep = 0.168, respectively), whereas the extent of the population divergence was relatively low ($G_{ST}$ = 0.064). $F_{IS}$, a measure of the deviation from random mating within the 11 populations, was 0.311. Total genetic diversity values ($H_T$) varied between 0.0 and 0.535, giving an average over all polymorphic loci of 0.323. The interlocus variation in within population genetic diversity ($H_S$) was high (0.305). An indirect estimate of the number of migrants per generation (Nm = 3.66) indicates that gene flow is high among Korean populations of the species. In addition, analysis of fixation indices revealed a substantial heterozygosity deficiency in some populations and at some loci. Mean genetic identity between populations was 0.988. It is highly probable that directional toward genetic uniformity in a relatively the homogenous habitat is thought to be operated among Korean populations of L. platyphylla.

Thermal Formation of Polycyclic Aromatic Hydrocarbons from Cyclopentadiene (CPD)

  • Kim, Do-Hyong;Kim, Jeong-Kwon;Jang, Seong-Ho;Mulholland, James A.;Ryu, Jae-Yong
    • Environmental Engineering Research
    • /
    • v.12 no.5
    • /
    • pp.211-217
    • /
    • 2007
  • Polycyclic aromatic hydrocarbon growth from cyclopentadiene (CPD) pyrolysis was investigated using a laminar flow reactor operating in a temperature range of 600 to $950^{\circ}c$. Major products from CPD pyrolysis are benzene, indene and naphthalene. Formation of observed products from CPD is explained as follows. Addition of the cyclopentadienyl radical to a CPD $\pi$-bond produces a resonance-stabilized radical, which further reacts by one of three unimolecular channels: intramolecular addition, C-H bond $\beta$-scission, or C-C bond $\beta$-scission. The intramolecular addition pathway produces a 7-norbornenyl radical, which then decomposes to indene. Decomposition by C-H bond $\beta$-scission produces a biaryl intermediate, which then undergoes a ring fusion sequence that has been proposed for dihydrofulvalene-to-naphthalene conversion. In this study, we propose C-C bond $\beta$-scission pathway as an alternative reaction channel to naphthalene from CPD. As preliminary computational analysis, Parametric Method 3 (PM3) molecular calculation suggests that intramolecular addition to form indene is favored at low temperatures and C-C bond $\beta$-scission leading to naphthalene is predominant at high temperatures.

Amplified fragment length polymorphism analysis and genetic variation of the pinewood nematode Bursaphelenchus xylophilus in South Korea

  • Jung, Jong-Woo;Han, Hye-Rim;Ryu, Sung-Hee;Kim, Won
    • Animal cells and systems
    • /
    • v.14 no.1
    • /
    • pp.31-36
    • /
    • 2010
  • The pinewood nematode Bursaphelenchus xylophilus causes pine wilt disease and is a serious economic concern for the forest industry of South Korea. To achieve effective control with limited resources, it is necessary to clarify the transmission routes and mechanisms of dispersal of this organism. Highly polymorphic and easy-to-use molecular markers can be used for investigating this aspect. In this study, we evaluated the usefulness of amplified fragment length polymorphisms (AFLPs) for investigating the genetic variations of B. xylophilus and related individuals from China, Japan, and South Korea. The AFLP patterns obtained in our study were similar to the microsatellite patterns reported in a previous study; our AFLP patterns indicated high genetic variability and cryptic genetic structure, but did not indicate any peculiar geographic structure. Moreover, the genetic distances between individuals suggested that the Korean population was affected to a greater extent by the Chinese population than the Japanese population. Further, the gene flow among the related species appeared to be limited; however, there may be also the possibility of genetic introgression among species. These results confirm the usefulness of AFLPs for understanding the epidemiology of pine wilt disease, thereby contributing to the effective control of this disease.

Heat and mass transfer analysis in air gap membrane distillation process for desalination

  • Pangarkar, Bhausaheb L.;Sane, Mukund G.
    • Membrane and Water Treatment
    • /
    • v.2 no.3
    • /
    • pp.159-173
    • /
    • 2011
  • The air gap membrane distillation (AGMD) process was applied for water desalination. The main objective of the present work was to study the heat and mass transfer mechanism of the process. The experiments were performed on a flat sheet module using aqueous NaCl solutions as a feed. The membrane employed was hydrophobic PTFE of pore size 0.22 ${\mu}m$. A mathematical model is proposed to evaluate the membrane mass transfer coefficient, thermal boundary layers' heat transfer coefficients, membrane / liquid interface temperatures and the temperature polarization coefficients. The mass transfer model was validated by the experimentally and fitted well with the combined Knudsen and molecular diffusion mechanism. The mass transfer coefficient increased with an increase in feed bulk temperature. The experimental parameters such as, feed temperature, 313 to 333 K, feed velocity, 0.8 to 1.8 m/s (turbulent flow region) were analyzed. The permeation fluxes increased with feed temperature and velocity. The effect of feed bulk temperature on the boundary layers' heat transfer coefficients was shown and fairly discussed. The temperature polarization coefficient increased with feed velocity and decreased with temperature. The values obtained were 0.56 to 0.82, indicating the effective heat transfer of the system. The fouling was observed during the 90 h experimental run in the application of natural ground water and seawater. The time dependent fouling resistance can be added in the total transport resistance.

Detection of rare point mutation via allele-specific amplification in emulsion PCR

  • Cheng, Changming;Zhou, Yin;Yang, Chao;Chen, Juan;Wang, Jie;Zhang, Jie;Zhao, Guoping
    • BMB Reports
    • /
    • v.46 no.5
    • /
    • pp.270-275
    • /
    • 2013
  • It is essential to analyze rare mutations in many fields of biomedical research. However, the detection of rare mutations is usually failed due to the interference of predominant wild-type DNA surrounded. Herein we describe a sensitive and facile method of detecting rare point mutation on the basis of allele-specific amplification in emulsion PCR. The identification and selective amplification of rare mutation are accomplished in one-pot reaction. The allele-specific primers coupled on magnetic beads allow the exclusive amplification and enrichment of the mutant amplicons. The productive beads bearing mutant amplicons are subsequently stained with the fluorescent dyes. Thus, the rare point mutations with a percentage as low as 0.1%, can be detected by fluorescent analysis. The relative percentages of mutation among different samples can be roughly accessed by counting the fraction of fluorescent positive beads through flow cytometry.

Optimal Fuzzy Sliding-Mode Control for Microcontroller-based Microfluidic Manipulation in Biochip System

  • Chung, Yung-Chiang;Wen, Bor-Jiunn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.196-201
    • /
    • 2004
  • In biometric and biomedical applications, a special transporting mechanism must be designed for the ${\mu}$TAS (micro total analysis system) to move samples and reagents through the microchannels that connect the unit procedure components in the system. An important issue for this miniaturization and integration is microfluid management technique, i.e., microfluid transportation, metering, and mixing. In view of this, this study presents an optimal fuzzy sliding-mode control (OFSMC) design based on the 8051 microprocessor and implementation of a complete microfluidic manipulated system implementation of biochip system with a pneumatic pumping actuator, a feedback-signal photodiodes and flowmeter. The new microfluid management technique successfully improved the efficiency of molecular biology reaction by increasing the velocity of the target nucleic acid molecules, which increases the effective collision into the probe molecules as the target molecules flow back and forth. Therefore, this hybridization chip was able to increase hybridization signal 6-fold and reduce non-specific target-probe binding and background noises within 30 minutes, as compared to conventional hybridization methods, which may take from 4 hours to overnight. In addition, the new technique was also used in DNA extraction. When serum existed in the fluid, the extraction efficiency of immobilized beads with solution flowing back and forth was 88-fold higher than that of free-beads.

  • PDF

Antiproliferative Properties of Methanolic Extract of Nigella sativa against the MDA-MB-231 Cancer Cell Line

  • Dilshad, Ahmad;Abulkhair, Omalkhair;Nemenqani, Dalal;Tamimi, Waleed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5839-5842
    • /
    • 2012
  • Breast cancer is the most commonly diagnosed cancer in women in the world and is one of the leading causes of death due to cancer. Health benefits have been linked to additive and synergistic combinations of phytochemicals in fruits and vegetables. Nigella sativa has been shown to possess anti-carcinogenic activity, inhibiting growth of several cancer cell lines in vitro. However, the molecular mechanisms of the anti-cancer properties of Nigella sativa phytochemical extracts have not been completely understood. Our data showed that Nigella sativa extracts significantly inhibited human breast cancer MDA-MB-231 cell proliferation at doses of $2.5-5{\mu}g/mL$ (P<0.05). Apoptotic induction in MDA-MB-231 cells was observed in a dose-dependent manner after exposure to Nigella sativa extracts for 48 h. Real time PCR and flow cytometry analyses suggested that Nigella sativa extracts possess the ability to suppress the proliferation of human breast cancer cells through induction of apoptosis.

Catalytic hydrogenation-assisted preparation of melt spinnable pitches from petroleum residue for making mesophase pitch based carbon fibers

  • Lee, Dong Hun;Choi, Jisu;Oh, Young Se;Kim, Yoong Ahm;Yang, Kap Seung;Ryu, Ho Jin;Kim, Yong Jung
    • Carbon letters
    • /
    • v.24
    • /
    • pp.28-35
    • /
    • 2017
  • We demonstrated an effective way of preparing melt spinnable mesophase pitches via catalytic hydrogenation of petroleum residue (fluidized catalytic cracking-decant oil) and their subsequent thermal soaking. The mesophase pitches thus obtained were analyzed in terms of their viscosity, elemental composition, solubility, molecular weight, softening point and optical texture. We found that zeolite-induced catalytic hydrogenation under high hydrogen pressure contributed to a large variation in the properties of the pitches. As the hydrogen pressure increased, the C/H ratio decreased, and the solubility in n-hexane increased. The mesophase pitch with entirely anisotropic domains of flow texture exhibited good meltspinnability. The mesophase carbon fibers obtained from the catalytically hydrogenated petroleum residue showed moderate mechanical properties.

Fabrication of Frozen Alginate Particles Containing Hypochlorous Acid(HOCl) (차아염소산수(HOCl)를 포함한 알지네이트 냉동 입자의 제작)

  • Jung, Sejin;Lee, Jinkee
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.2
    • /
    • pp.26-32
    • /
    • 2017
  • Hypochlorous acid(HOCl) is a chemical that is a safe sanitizer and disinfectant approved by the Food and Drug Administration as a food additive, exhibiting strong sterilizing power with low effective chlorine concentration of pH 5.0-6.5 and effective chlorine concentration 10-80 ppm. To apply to fishery industries, we develope the HOCl ice for store or delivery of fishery products. However when HOCl is being frozen, the contained HOCl are expelled out from the ice due to the molecular structures of ice; there is no space to contain HOCl inside. To increase chlorine containing amount in ice, we develop the alginate particles containing HOCl which is bio comparable since alginate is a natural polymer extracted from the brown algae and it is widely used for drug delivery and containing substances, etc. We produce HOCl with water as base solution suppressing osmotic flow from fishery products, and mix it with the developed alginate particles and made HOCl-alginate ice and checked the remaining amount of HOCl. We measure the change of pH and chlorine concentration optimizing the best concentration of alginate particles. Finally, we produce the alginate particle HOCl ices with respect to the alginate's optimal concentration.

A Complete, Reductive Depolymerization of Concentrated Sulfuric Acid Hydrolysis Lignin into a High Calorific Bio-oil using Supercritical Ethanol

  • Riaz, Asim;Kim, Jaehoon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.447-452
    • /
    • 2016
  • It is imperative to develop an effective pathway to depolymerize lignin into liquid fuel that can be used as a bioheavy oil. Lignin can be converted into liquid products either by a solvent-free thermal cracking in the absence air, or thermo-chemical degradation in the presence of suitable solvents and chemicals. Here we show that the solvent-assisted liquefaction has produced promising results in the presence of metal-based catalysts. The supercritical ethanol is an efficient liquefaction solvent, which not only provides better solubility to lignin, but also scavenges the intermediate species. The concentrated sulfuric acid hydrolysis lignin (CSAHL) was completely liquefied in the presence of solid catalysts (Ni, Pd and Ru) with no char formation. The effective deoxy-liquefaction nature associated with scEtOH with aid hydrodeoxygenation catalysts, resulted in significant reduction in oxygen-to-carbon (O/C) molar ratio up to 61%. The decrease in oxygen content and increase in carbon and hydrogen contents increased the calorific value bio-oil, with higher heating value (HHV) of $34.6MJ{\cdot}Kg^{-1}$. The overall process is energetically efficient with 129.8% energy recovery (ER) and 70.8% energy efficiency (EE). The GC-TOF/MS analysis of bio-oil shows that the bio-oil mainly consists of monomeric species such as phenols, esters, furans, alcohols, and traces of aliphatic hydrocarbons. The bio-oil produced has better flow properties, low molecular weight, and high aromaticity.