• Title/Summary/Keyword: Molecular Flow

Search Result 890, Processing Time 0.034 seconds

Induction of Apoptosis in the HepG2 Cells by HY53, a Novel Natural Compound Isolated from Bauhinia forficata

  • Lim Hae-Young;Lim Yoong-Ho;Cho Youl-Hee;Lee Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1262-1268
    • /
    • 2006
  • In the search for a novel cytotoxic substance from medicinal plants, HY53 ($C_{17}H_{32}O_2N_2$; molecular weight 296) was isolated from the leaves of Pata de Vaca (Bauhinia forficata). The growth of the HepG2 cells was inhibited in a dose-dependent manner when treated with 0.07 to 0.40 mM HY53 for 24 h (IC$_{50}$: 0.13 mM). Furthermore, nuclear DAPI staining revealed the typical nuclear features of apoptosis in the HepG2 cells exposed to 0.27 mM HY53, whereas a flow cytometric analysis of the HepG2 cells using propidium iodide showed that the apoptotic cell population increased gradually from 8% at 0 mM to 23% at 0.14 mM and 45% at 0.40 mM after being exposed to each concentration of HY53 for 24 h. Moreover, a TUNEL assay also exhibited the apoptotic induction of the HepG2 cells treated with HY53. To obtain further information on the HY53-induced apoptosis, the expression level of certain apoptosis-associated proteins was examined using a Western blot analysis. Treatment of the HepG2 cells with HY53 resulted in the activation of caspase-3, and subsequent proteolytic cleavage of poly(ADP-ribose) polymerase (PARP). Consequently, the results confirmed that the apoptosis in the HepG2 cells was induced by HY53 and the involvement of caspase-3-mediated PARP cleavage in the apoptotic process.

Rapid and Accurate Detection of Bacillus anthracis Spores Using Peptide-Quantum Dot Conjugates

  • Park, Tae-Jung;Park, Jong-Pil;Seo, Gwi-Moon;Chai, Young-Gyu;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1713-1719
    • /
    • 2006
  • A method for the simple, rapid, specific, and accurate detection of Bacillus anthracis spores was developed by employing specific capture peptides conjugated with fluorescent quantum dots (QDs). It was possible to distinguish B. anthracis spores from the spores of B. thuringiensis and B. cereus using these peptide-QD conjugates by flow cytometric and confocal laser scanning microscopic analyses. For more convenient high-throughput detection of B. anthracis spores, spectrofluorometric analysis of spore-peptide-QD conjugates was performed. B. anthracis spores could be detected in less than 1 h using this method. In order to avoid any minor yet false-positive signal caused by the presence of B. thuringiensis spores, the B-Negative peptide, which can only bind to B. thuringiensis, conjugated with another type of QD that fluoresces at different wavelength was also developed. In the presence of mixed B. anthracis and B. thuringiensis spores, the BABA peptide conjugated with QD525 and the B-Negative peptide conjugated with QD585 were able to bind to the former and the latter, specifically and respectively, thus allowing the clear detection of B. anthracis spores against B. thuringiensis spores by using two QD-labeling systems. This capture peptide-conjugated QD system should be useful for the detection of B. anthracis spores.

Curdione Inhibits Proliferation of MCF-7 Cells by Inducing Apoptosis

  • Li, Juan;Bian, Wei-He;Wan, Juan;Zhou, Jing;Lin, Yan;Wang, Ji-Rong;Wang, Zhao-Xia;Shen, Qun;Wang, Ke-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9997-10001
    • /
    • 2014
  • Background: Curdione, one of the major components of Curcuma zedoaria, has been reported to possess various biological activities. It thus might be a candidate anti-flammatory and cancer chemopreventive agent. However, the precise molecular mechanisms of action of curdione on cancer cells are still unclear. In this study, we investigated the effect of curdione on breast cancer. Materials and Methods: Xenograft nude mice were used to detect the effect of curdione on breast cancer in vivo; we also tested the effect of curdione on breast cancer in vitro by MTT, Flow cytometry, JC-I assay, and western blot. Results: Firstly, we found that curdione significantly suppressed tumor growth in a xenograft nude mouse breast tumor model in a dose-dependent manner. In addition, curdione treatment inhibited cell proliferation and induced cell apoptosis. Moreover, after curdione treatment, increase of impaired mitochondrial membrane potential occurred in a concentration dependent manner. Furthermore, the expression of apoptosis-related proteins including cleaved caspase-3, caspase-9 and Bax was increased in curdione treatment groups, while the expression of the anti-apoptotic Bcl-2 was decreased. Inhibitors of caspase-3 were used to confirm that curdione induced apoptosis. Conclusions: Overall, our observations first suggested that curdione inhibited the proliferation of breast cancer cells by inducing apoptosis. These results might provide some molecular basis for the anti-cancer activity of curdione.

siRNA Silencing EZH2 Reverses Cisplatin-resistance of Human Non-small Cell Lung and Gastric Cancer Cells

  • Zhou, Wen;Wang, Jian;Man, Wang-Ying;Zhang, Qing-Wei;Xu, Wen-Gui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2425-2430
    • /
    • 2015
  • Clinical resistance to chemotherapeutic agents is one of the major hindrances in the treatment of human cancers. EHZ2 is involved in drug resistance and is overexpressed in drug-resistant cancer cell lines. In this study, we investigated the effects of EHZ2 on cisplatin -resistance in A549/DDP and AGS/DDP cells. EHZ2 mRNA and protein were found to be significantly overexpressed in A549/DDP and AGS/DDP cells, compared to parental cells. EHZ2 siRNA successfully silenced EHZ2 mRNA and protein expression. Proliferation was inhibited and drug resistance to cisplatin was improved. Flow cytometry showed that silencing of EHZ2 arrested A549/DDP and AGS/DDP cells in the G0/G1 phase, increasing apoptosis, rh-123 fluorescence intensity and caspase-3/8 activities. Silencing of EHZ2 also significantly reduced the mRNA and protein expression levels of cyclin D1 and MDR1,while up-regulating p15, p21, p27 and miR-218 in A549/DPP cells. Furthermore, silencing of EHZ2 also significantly increased the expression level of tumor suppressor factor miR-218. We also found down-regulating EHZ2 expression increased methylation in A549/DDP and AGS/DDP cells. This study demonstrates that drug resistance can be effectively reversed in human cisplatin-resistant lung and gastric cancer cells through delivery of siRNAs targeting EHZ2.

HY253, a Novel Decahydrofluorene Analog, Induces Apoptosis via Intrinsic Pathway and Cell Cycle Arrest in Liver Cancer HepG2 Cells

  • Choi, Ko-woon;Suh, Hyewon;Jang, Seunghun;Kim, Dongsik;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.413-417
    • /
    • 2015
  • Recently, we isolated HY253, a novel decahydrofluorene analog with a molecular structure of 7,8a-divinyl-2,4a,4b,5,6,7,8,8a,9,9a-decahydro-1H-fluorene-2,4a,4b,9a-tetraol from the roots of Aralia continentalis, which is known as Dokwhal (獨活), a traditional medicinal herb. Moreover, we previously reported its cytotoxic activity on cancer cell proliferation in human lung cancer A549 and cervical cancer HeLa cells. The current study aimed to evaluate its detailed molecular mechanisms in cell cycle arrest and apoptotic induction in human hepatocellular carcinoma HepG2 cells. Flow cytometric analysis of HepG2 cells treated with $60{\mu}M$ HY253 revealed appreciable cell cycle arrest at the G1 phase via inhibition of Rb phosphorylation and down-regulation of cyclin D1. Furthermore, using western blots, we found that up-regulation of cyclin-dependent kinase inhibitors, such as p21CIP1 and p27KIP1, was associated with this G1 phase arrest. Moreover, TUNEL assay and immunoblottings revealed apoptotic induction in HepG2 cells treated with $60{\mu}M$ HY253 for 24 h, which is associated with cytochrome c release from mitochondria, via down-regulation of anti-apoptotic Bcl-2 protein, which in turn resulted in activation of caspase-9 and -3, and proteolytic cleavage of poly(ADP-ribose) polymerase (PARP). Accordingly, we suggest that HY253 may be a potent chemotherapeutic hit compound for treating human liver cancer cells via up-regulation and activation of the p53 gene.

Protective Immunity of Pichia pastoris-Expressed Recombinant Envelope Protein of Japanese Encephalitis Virus

  • Kwon, Woo-Taeg;Lee, Woo-Sik;Park, Pyo-Jam;Park, Tae-Kyu;Kang, Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1580-1587
    • /
    • 2012
  • Japanese encephalitis virus (JEV) envelope (E) protein holds great promise for use in the development of a recombinant vaccine. Purified recombinant E (rE) protein may be useful for numerous clinical applications; however, there are limitations in using the Escherichia coli expression system for producing high-quality rE protein. Therefore, in this study, the yeast expression system was used to generate the rE protein. For protein production using the yeast system, the full-length JEV E gene was cloned into Pichia pastoris. SDS-PAGE and immunoblotting analysis demonstrated that the rE protein had a molecular mass of 58 kDa and was glycosylated. The predicted size of the mature unmodified E protein is 53 kDa, suggesting that post-translational modifications resulted in the higher molecular mass. The rE protein was purified to greater than 95% purity using combined ammonium sulfate precipitation and a SP-Sepharose Fast Flow column. This purified rE protein was evaluated for immunogenicity and protective efficacy in mice. The survival rates of mice immunized with the rE protein were significantly increased over that of Hyphantria cunea nuclear polyhedrosis virus E protein (HcE). Our results indicate that the rE protein expressed in the P. pastoris expression system holds great promise for use in the development of a subunit vaccine against JEV.

The Study of Aati-cancer Effects of Bee Venom for Aqua-acupuncure (약침용(藥鍼用) 봉독성분(蜂毒成分) 중(中) Apamin, Melittin의 항암작용(抗癌作用))

  • Kwon, Do-Hee;Lee, Jae-dong;Choi, Do-Yong
    • Journal of Acupuncture Research
    • /
    • v.18 no.1
    • /
    • pp.129-145
    • /
    • 2001
  • Objectives : To characterize the antitumorigenic potential of three representative bee venom components, Melittin, Apamin, and Phospholipase A2, their effects on cell proliferation and apotosis of the human melanoma cell line SK-MEL-2 were analyzed using molecular biological approaches. Methodes & Results : To determine the doses of the drugs that do not induce cytotoxic damage to this cell line, cell viability was examined by MTT assay. While SK-MEL-2 cells treated with 0.5 - 2.0㎍/㎖ of each drug showed no recognizable cytotoxic effect, marked reductions of cell viability were detected at concentrations over 5.0㎍/㎖. [3H]thymidine incorporation assay for cell proliferation demonstrated that DNA replication of SK-MEL-2 cells is inhibited by Apamin and Phospholipase A2 in a dose-dependent manner. Consistent with this result, the cells were accumulated at the G1 phase of the cell cycle after treatment with Apamin and Phospholipase A2, whereas no detectable change in cell proliferation was identified by Melittin treatment. In addition, tryphan blue exclusion and flow cytometric analyses showed that all of these drugs can trigger apoptotic cell death of SK-MEL-2, suggesting that Melittin, Apamin, and Phospholipase A2 have antitumorigenic potential through the suppression of cell growth and/or induction of apoptosis. Qantitative RT-PCR analysis revealed that Apamin and Phospholipase A2 inhibit expression of growth-promoting genes such as c-Jun, c-Fos, and Cyciin D1. Furthermore, Phospholipase A2 induced tumor suppressors p53 and p21/Wafl. In addition, all three drugs were found to activate expression of a representative apoptosis-inducing gene Bax while expression of apoptosis-suppressing Bcl-2 and Bcl-XL genes was not changed. Taken together, this study strongly suggests that Metittin, Apamin, and Phosphalipase A2 may have antitumorigenic activities, which are associated with its growth-inhibiting and/or apoptosis-inducing potentials.

  • PDF

Effect of Functional Monomer on Retention Factor of Chiral Racemate (기능성 단량체가 키랄 물질의 체류인자에 미치는 영향)

  • Jin, Yin-Zhe;Row, Kyung-Ho
    • KSBB Journal
    • /
    • v.20 no.4
    • /
    • pp.260-265
    • /
    • 2005
  • In this work, molecular imprinted polymers (MIPs) using the template of the N-CBZ (carbobenzyloxy)-L-phenylalanine, MAA and 4-VPY as a monomer, EGDMA as a crosslinker and AIBN as an initiator were considered. The prepared polymer particles $(Ca.\;25-35\;{\mu}m)$ were packed into a chromatographic column $(3.9\;\times\;150\;mm)$. The chromatographic characteristics of the retention on the MIP were experimented with acetonitrile as a mobile phase at the flow rate of mobile phase, 0.5 ml/min. The retention factors and resolutions of chiral racemate of the N-CBZ-D, L-phenylalanine were measured. The results showed that the retention factor and resolution by the two co-monomer imprinting polymer were higher than the single monomer imprinting polymers, which indicated an increase in the affinity of the MIP with the sample as a result of the cooperation effect of the binding sites.

Fibronectin-Dependent Cell Adhesion is Required for Shear-Dependent ERK Activation

  • Park, Heonyong;Shin, Jaeyoung;Lee, Jung Weon;Jo, Hanjoong
    • Animal cells and systems
    • /
    • v.8 no.1
    • /
    • pp.27-32
    • /
    • 2004
  • Endothellial cells are subjected to hemodynamic shear stress, the dragging force generated by blood flow. Shear stress regulates endothelial cell shape, structure, and function, including gene expression. Since endothelial cells must be anchored to their extracellular matrices(ECM) for their survival and growth, we hypothesized that ECMs are crucial for shear-dependent activation of extracellular signalactivated regulated kinase(ERK) that is important for cell proliferation. Shear stress-dependent activation of ERK was observed in cells plated on two different matrices, fibronectin and vitronectin(the two most physiologically relevant ECM in endothelial cells). We then treated bovine aortic endothelial cells(BAECs) with Arg-Gly-Asp(RGD) peptides that block the functional activation of integrin binding to fibronectin and vitronectin, and a nonfunctional peptide as a control. Treatment of cells with the RGD peptides, but not the control peptide, significantly inhibited ERK activity in a concentration-dependent manner. This supports the idea that integrin adhesion to the ligands, fibronectin and vitronectin, mediates shear stress-dependent activation of ERK. Subsequently, whereas antagonists of vitronectin(LM 609, an antibody for integrin ${\alpha}_{\gamma}$/${\beta}_3$ and XT 199, an antagonist specific for integrin ${\alpha}_{\gamma}$/${\beta}_3$) did not have any effect on shear-dependent activation of ERK, antagonists of fibronectin(a neutralizing antibody for integrin ${\alpha}_5$/${\beta}_1$or ${\alpha}_4$${\beta}_1$ and SM256) had an inhibitory effect. These results clearly demonstrate that mechanoactivation of ERK requires anchoring of endothelial cells to fibronectin through integrins.

Induction of p53-Dependent G1 Cell Cycle Arrest by Rhus verniciflua. Stokes Extract in Human Breast Carcinoma MCF-7 Cells (MCF-7 인체 유방암 세포에서 옻나무 추출물이 p53-Dependent G1 Cell Cycle에 미치는 영향)

  • Hong, Sang-hoon;Han, Min-ho;Choi, Yung-hyun;Park, Sang-eun
    • The Journal of Internal Korean Medicine
    • /
    • v.36 no.1
    • /
    • pp.13-21
    • /
    • 2015
  • Objectives : In Korea, Rhus verniciflua Stokes (RVS) has been used in traditional medicine for various diseases such as back pain, syndromes of the blood system in women, gastrointestinal disease, and cancer. However, the molecular mechanisms of its anti-cancer activity have not been clearly elucidated yet. Methods : This study investigated the possible mechanisms by which RVS extract (RVE) exerts its anti-proliferative action in cultured human breast carcinoma MCF-7 cells. Results : Treatment with RVE in MCF-7 cells resulted in inhibition of cell viability through G1 arrest of the cell cycle and induction of apoptosis in a time- and concentration-dependent manner, as determined by MTT assay and flow cytometry analysis. The induction of G1 arrest by RVE treatment was associated with the inhibition of cyclin D1, cyclin-dependent kinase (Cdk) 2, retinoblastoma protein (pRB), and mouse double minute 2 (MDM2) expression. Moreover, RVE treatment concentration dependently increased the levels of tumor suppressor p53, which was associated with the marked induction of Cdk inhibitors such as p21 (Waf1/Cip1) and p27 (Kip1). However, the inhibition of p53 function by the wild-type p53-specific inhibitor, pifithrin-α, abolished the above-mentioned effects of RVE, showing that p53 was responsible for the cytotoxicity of RVE Conclusions : These data indicate that a molecular pathway involving p53-dependent G1 cell cycle arrest plays a pivotal role in the cellular response to RVE, and demonstrate the potential applications of RVE as an anti-cancer drug for breast cancer treatment.