• Title/Summary/Keyword: Molecular Dynamics.

Search Result 1,098, Processing Time 0.034 seconds

Molecular Dynamics Study on Behaviors of Liquid Cluster with Shape and Temperature of Nano-Structure Substrate (나노구조기판의 형상 및 온도변화에 따른 액체 클러스터의 거동에 대한 분자동역학적 연구)

  • Ko, Sun-Mi;Jeong, Heung-Cheol;Shibahara, Masahiko;Choi, Gyung-Min;Kim, Duck-Jool
    • Journal of ILASS-Korea
    • /
    • v.13 no.1
    • /
    • pp.34-41
    • /
    • 2008
  • Molecular dynamic simulations have been carried out to study the effect of the nano-structure substrate and its temperature on cluster laminating. The interaction between substrate molecules and liquid molecules was modeled in the molecular scale and simulated by the molecular dynamics method in order to understand behaviors of the liquid cluster on nano-structure substrate. In the present model, the Lennard-Jones potential is applied to mono-atomic molecules of argon as liquid and platinum as nano-structure substrate to perform simulations of molecular dynamics. The effect of wettability on a substrate was investigated for the various beta of Lennard-Jones potential. The behavior of the liquid cluster and nano-structure substrate depends on interface wettability and function of molecules force, such as attraction and repulsion, in the collision progress. Furthermore, nano-structure substrate temperature and beta of Lennard-Jones potential have effect on the accumulation ratio. These results of simulation will be the foundation of coating application technology for micro fabrication manufacturing.

  • PDF

Folding Dynamics of β-Hairpins: Molecular Dynamics Simulations

  • Lee, Jin-Hyuk;Jang, Soon-Min;Park, Young-Shang;Shin, Seok-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.785-791
    • /
    • 2003
  • We have studied the folding mechanism of β-hairpins from proteins of 1GB1, 3AIT and 1A2P by unfolding simulations at high temperatures. The analysis of trajectories obtained from molecular dynamics simulations in explicit aqueous solution suggests that the three β-hairpin structures follow different mechanism of folding. The results of unfolding simulations showed that the positions of the hydrophobic core residues influence the folding dynamics. We discussed the characteristics of different mechanisms of β-hairpin folding based on the hydrogen-bond-centric and the hydrophobic-centric models.

A New Approach for Multi-Scale for Material Deformation (재료변형의 멀티스케일 해석에 관한 새로운 접근법)

  • Park J.;Kim Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.62-65
    • /
    • 2004
  • Recently, an approach for nanoscale deformation has been developed that couples the atomistic and continuum approaches using Finite Element Method (FEM) and Molecular Dynamics (MD). However, this approach still has problems to connect two approaches because of the difference of basic assumptions, continuum and atomistic. To solve this problem, an alternative way is developed that connects the quasimolecular dynamics (QMD) and molecular dynamics (MD). In this paper, we suggest the way to make and validate the MD-QMD coupled model.

  • PDF