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In recent papers,1,2 the friction and diffusion coefficients

of a tracer in a Lennard-Jones (LJ) solvent (N=32,000) were

evaluated by equilibrium molecular dynamics (MD) simula-

tions in a micro-canonical ensemble. The solvent molecules

of diameter σ1 interact with each other through a repulsive

LJ force and the tracer of diameter σ2 interacts with the

solvent molecules through the same repulsive LJ force

except a different LJ size or diameter parameter. Positive

deviation of the diffusion coefficient (D) of the tracer from a

Stokes-Einstein behavior was observed and the plot of 1/D

versus σ2 showed a linear behavior. It was also observed that

the friction coefficient ζ of the tracer varies linearly with σ2

in accord with the prediction of the Stokes law but showed a

smaller slope than the Stokes prediction. When the values of

ratios (σ2/σ1) of sizes between the tracer and solvent

molecules are higher than 5 approximately, the behavior of

the friction and diffusion coefficients is well described by

the Einstein relation, 

D = kT/ζ (1)

from which the tracer is considered as a Brownian particle,

where k is the Boltzmann constant and T the absolute

temperature.

When the tracers have a quasi-macroscopic size, the

Stokes law can be derived from hydrodynamic arguments. It

gives an expression of the friction coefficient

ζ = CπηR2, (2)

where R2 is the radius of the diffusing particle and C is the

hydrodynamic boundary condition which is 4 for 'slip' and 6

for ‘stick’.3 

Above two Eqs. (1) and (2) combines to give the Stokes-

Einstein (SE) formula,

.  (3)

This relation has been verified experimentally in great

detail4 and is theoretically well understood.5 If the size of the

diffusing particle is not large compared with that of the

solvent molecule, the Stokes-Einstein formula is not ex-

pected to remain valid.

The first attempt to determine the range of the size and

mass values of the solute particles where the solute diffusion

coefficient is well estimated from the SE formula was done

by Ould-Kaddour and Levesque6 carrying out a MD simu-

lation. They found that positive deviations from the SE

formula are observed as the size ratio or the mass ratio of the

tracer to the solvent molecules is lowered, and that for equal

masses of solvent and tracer molecules the crossover to the

hydrodynamics regimes is found to occur when the size ratio

is about 4.6

Later on, another MD simulations was performed by

Willeke7 to investigate the mass ratio dependence of the

tracer self-diffusion coefficient as a function of density and

length diameter ratio σ2/σ1. He concluded that for σ2/σ1 > 1

the SE prediction is not valid for mass ratios 1/16 ≤ m2/

m1 ≤ 50, and that for σ2/σ1 > 2 and for m2/m1 < 1 the SE

regime is reached for smaller densities than for the same

system but m2/m1 > 1. The test of SE formula for the size

ratio or the mass ratio of the tracer was further discussed by

Sokolovskii et al.8 for hard sphere fluids, by Cappelezzo et

al.9 for Lennard-Jones (LJ) fluids, by Funazukuri et al.10 for

supercritical and liquid conditions, and by Harris11 for LJ,

molecular, and ionic liquids.

Three limiting procedures are involved in the definition of

the friction coefficient: the long time limit (t→∞), the

thermodynamic limit (N→∞), and the infinite mass limit

(M→∞).12 One can expect that the Langevin approximation

is valid for a finite but sufficiently large mass of the tracer

and for a large number of solvent particles. The resulting

friction coefficient is zero in the infinite time limit (t→∞).

The only route to have a non-zero value for the friction

coefficient is by first taking M→∞. In the thermodynamic

limit N→∞, the projected and unprojected force auto-

correlation functions are the same13-16 and Eq. (8) below can

be used. Since MD simulations should be carried out at finite

N, the study of the N dependence of the time dependent

friction coefficient ζ(t) and the estimate of the friction

coefficient from either the decay of the momentum or force

autocorrelation functions is of interest.13,17 The main purpose

of this note is to study the validity of the SE relation by

carrying out simple MD simulations of a tracer in a large

number of LJ solvent molecules (N=320,000). 

Molecular Dynamics Simulation Details. The LJ potential

used in our MD simulations is a purely repulsive CWA

(Chandler-Weeks-Andersen) potential18:

D=
kT

CπηR2

-----------------
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We have chosen the LJ parameters for the solvent molecules

as σ = σ1 = 0.2 nm and ε = 1.006 kJ/mol. A preliminary MD

simulation of NVE fixed microcanonical ensemble for N =

320,000 LJ particles with mass of m = 3.9948 g/mol was

started in the cubic box of length L = 14.74 nm, of which the

density is equal to 0.66338 g/cm3. The corresponding

reduced number density is ρ* = ρσ1
3 = (N/V)σ1

3 = 0.8 which

is a typical value used for several MD simulation studies for

transport coefficients of the LJ model fluid.19 We have

chosen the temperature of the system is chosen as 40.333 K

for comparison with the mesoscopic solvent case13 and T* =

kT/ε = 1/3. 

A Lennard-Jones particle with various size (σ2) and mass

(M) is introduced at the center of the cubic simulation box

after a full equilibration of the solvent-only system. The

tracer and LJ solvent molecule interacts through the above

CWA potential18 with LJ parameters of σ = (σ1+σ2)/2 and

the same ε. Two set of M and σ2 are chosen. (1) M = m and

σ2/σ1 = 0.1, 0.5, 1, 2, 5, and 10, and (2) M = ∞ and σ2/σ1 =

0.1, 0.5, 1, 2, 5, and 10. For size ratios higher than 1, in order

to maintain a constant value of the pressure, the volume of

the box was slightly increased by an amount that

corresponds to the excess volume occupied by the tracer and

so the length of the cubic simulation box for the system is

redefined by (Nσ1
3 + σ2

3)/L3 = 0.8. 

We have applied long range corrections to the energy,

pressure, etc. due to the potential truncation by assuming

that the pair distribution function was uniform beyond the

cutoff distance.20 The time integration for the equations of

motion were solved using the velocity Verlet algorithm21

with a time step of 0.2 × 10−14 second. The systems were

fully equilibrated and the equilibrium properties were aver-

aged over four blocks of 1,000,000 time steps of 10 different

initial configurations. The configurations of LJ particles

were stored every 5 time steps for further analysis. 

Diffusion coefficient (D) and viscosity (η) are calculated

from the mean square displacement and the stress auto-

correlation function, respectively, by

 (5)

and

,  (6)

where piáâ is given by 

 (7)

with aβ = xy, xz, and yz since piαβ = piβα for LJ system.

A time dependent friction coefficient ζ(t) is defined from

the force autocorrelation function by19

 (8)

and through the Laplace transforms of the projected and

unprojected force autocorrelation functions,14-16 in t space,

the following relation is obtained

 .  (9)

The friction coefficient may then be estimated from the

extrapolation of the long time decay of the time dependent

friction coefficient ζ(t) to t = 0 or from the decay rates of

ζ(t).

Results and Discussion

First we have calculated the viscosity from Eq. (6) for the

solvent-only system of N = 320,000 Lennard-Jones (LJ)

particles of mass m = 3.995 g/mol in the cubic simulation

box of length L = 14.74 nm interacting through the CWA

potential with LJ parameters σ = 0.2 nm and ε = 1.00604 kJ/

mol at T = 40.33 K: η = 2.62 ± 0.01 mP (10−4 kg/m·s). In the

previous study2 for the system of N = 32,000 with L = 6.84

nm, the obtained viscosity was η = 2.53 ± 0.01 mP, and in

the case of the mesoscopic solvent of N = 327,680,13 η =

4.70 mP. According to the Stokes law [Eq. (2)] and the SE

formula [Eq. (3)], the friction coefficient increases and the

diffusion coefficient decreases with increasing the size of

system since the viscosity increases with the size of system.

In order to estimate the diffusion coefficient of the tracer

using Eq. (5), we have calculated the mean square dis-

placement of the tracer in the systems of M = m and σ2/σ1 =

0.1, 0.5, 1, 2, 5, and 10. For the system of M = m and σ2 = σ1

= 0.2 nm, the diffusion coefficient of the tracer is estimated

accurately since the statistics is very good with a solvent-

only system of N = 320,001 molecules. The calculated diffu-

sion coefficients of the tracer in this system is D = 2.53 × 10−5

cm2/s compared with D = 2.43 × 10−5 cm2/s for the system of

N = 32,001. Both viscosity and diffusion coefficient of the

solvent-only system are increased by increasing the number

of solvent molecules. For the systems of  with M =

m, the calculation of the diffusion coefficient of the tracer

requires a long time simulation run since the statistics for

one particle is very poor. The diffusion coefficients of the

larger system (N = 320,000) are slightly larger than those of

the smaller system (N = 32,000) as listed in Table 1. The

effect of increasing the size of system on the result of

diffusion coefficients conflicts with the prediction of the SE

formula [Eq. (3)].

In the calculation of the friction coefficients of the tracer

from Eq. (9), the mass of the tracer, M, becomes infinity, or

the tracer is fixed in space using a holonomic constraint

method.22 The MD simulation by using an infinite mass

violates the equation of motion since the tracer never moves

with the force on it and the constraint method MD simu-

lation returns the tracer back to its original position with zero

velocity. The trajectories by both MD simulations are not the

v
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same. It is found that the momentum of the whole system

carried out by the infinite mass or by the constraint method

MD simulations is not conserved, because the momentum of

the tracer is not well defined with zero velocity or infinite

mass. In spite of this, the momentum of the fixed particle is

defined as the negative of the total momentum of the solvent

particles.12,17 A useful trick for this difficulty is to put the

mass of the tracer as 1090 g/mol, and then the momentum of

the system is conserved: The magnitude of the mass of the

tracer is on the order of 90 and its velocity is on the order of

−90, but its momentum has a finite value and is equal to the

negative of the total momentum of the solvent particles. 

As discussed in the previous study,2 there exist a total of 6

routes for the calculation of the friction coefficient of the

tracer. The first two can be obtained directly from ζ(t) of Eq.

(8), from the extrapolation of the exponential long time-

decay of ζ(t) to t = 0 and from the decay rate of ζ(t),

according to Eq. (9). We have found that the former may be

determined correctly.1,2,13 However, it is difficult to deter-

mine the latter from the decay rate of ζ(t), −ζ/Nm, especially

for very large N where the decay rate is close to zero. While

the decay rates scale as 1/N for the smaller N values, the

small value of the decay rate and relatively large statistical

error makes it difficult to determine this scaling for very

large values of N. The third is obtained from the decay rate,

−ζ/Nm, of the normalized momentum autocorrelation func-

tion, C(t)= . However, this auto-

correlation function of the tracer calculated from MD

simulations was wrong (not shown).2 One possible explana-

tion for this is related to the well-known rounding error in

calculation of velocity in the usual MD simulation or to the

scaling of the decay rate in the thermodynamic limit

(N→∞). The fourth and fifth are obtained from another time

dependent friction coefficient, which is derived by the time

of C(t), according to Eq. (9). Again these friction coeffi-

cients turned out to be incorrect since C(t) is wrong. The

final friction coefficient is obtained from the decay rate, −ζ/

Nm, of another momentum autocorrelation function c(t),

which is derived by the time integration of ζ(t). Since ζ(t)

calculated directly from Eq. (8) is correct, c(t) may be also

correct, but it is unable to estimate the friction coefficient

form c(t) due to the scaling of the decay rate in the

thermodynamic limit (N→∞) again. 

Therefore the only way to estimate the friction coefficient

in the large N case is from the extrapolation of the expon-

ential long time-decay of ζ(t) to t = 0 using Eq. (9). The

friction coefficients of the tracer in the systems of M = ∞ and

σ2/σ1 = 0.1, 0.5, 1, 2, 5, and 10 obtained from the momen-

tum-conserved MD simulation are listed in Table 1. The

effect of increasing the size of system on the result of

friction coefficients agrees with the prediction of the Stokes

law [Eq. (2)] since the viscosity increases with the size of

system.

We plot the friction coefficient of the tracer as a function

of σ2/σ1 in Figure 1. It is seen that the friction coefficients of

the tracer for both the larger (N = 320,000) and smaller

(N = 32,000) systems vary linearly with σ2/σ1 in accord with

the prediction of the Stokes law, Eq. (2). The slopes are

different from each other: 0.153 and 0.138 kg/mol·ps, respec-

tively. The hydrodynamic estimates of the friction ζh =

CπηR2 versus σ2/σ1 with the slip boundary condition (C = 4)

using the independently computed viscosities η = 2.62 ×

10−4 kg/m·s and 2.53 × 10−4 kg/m·s of the solvent-only

systems are also plotted in the same figure. The slopes are

obtained from the Stokes law: 0.198 and 0.191 kg/mol·ps,

respectively, for the larger and smaller systems. If the hydro-

dynamic boundary condition is chosen as C = 3.1 for the

larger system or as C = 2.9 for the smaller system instead of

4, the two lines of the calculated friction coefficient and the

Stokes law coincide with each other. Therefore the effect of

P t( ) P 0( )⋅〈 〉/ P 0( )
2

〈 〉=e
ζt/Nm–

Table 1. Comparison of diffusion D (10−5 cm2/s) and friction coefficients ζ (kg/mol·ps) of the tracer in the larger (N = 320,000) and the
smaller (N = 32,000) systems. Uncertainties (standard deviation) in the last reported digit(s) are given in the parenthesis

 σ2/σ1  0.1  0.5  1  2  5  10

D
N = 320,000 22.0(22) 6.99(58) 2.53(22) 1.03(16) 0.39(8) 0.20(5)

N = 32,000 21.2(26) 6.74(60) 2.43(24) 0.99(15) 0.37(7) 0.19(4)

ζ
N = 320,000 0.045(2)  0.096(2) 0.181(11) 0.311(12) 0.774(67) 1.53(16)

N = 32,000 0.040(1)  0.092(2) 0.166(10) 0.302(11) 0.713(64) 1.38(15)

Figure 1. Friction coefficient, ζ (kg/mol·ps), of the tracer and ζD/
kT as a function of σ2/σ1.  and : ζ obtained from MD
simulations for N = 32,000 and 320,000, respectively. Solid and
dashed lines : ζ by the Stokes law, Eq. (2).  and : ζD/kT
obtained from MD simulations for N = 32,000 and 320,000,
respectively. Dot-dashed line : ζD/kT = 1 for the Einstein relation,
Eq. (1).

● ■

◆ ▲
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increasing the size of system in the present work seems to

give a better result to agree with the Stokes Law.

Finally, in Figure 1 we plot ζD/kT as a function of σ2/σ1

for both the larger and the smaller systems. This value

decreases initially as σ2/σ1 increases, and then levels off at

σ2/σ1 independent values of 0.91 and 0.79, respectively. This

leveling-off takes place for σ2/σ1 between 5 and 10. Accord-

ing to the Einstein relation, Eq. (1), however, the value of

ζD/kT is expected to be 1 for all σ2/σ1. Again the effect of

increasing the size of system in the present work seems to

give a better result to agree with the Einstein relation. If we

choose the criterion that the solute can be considered as a

Brownian particle as the diffusion coefficient of the solute

obeys the Einstein relation between D and ζ the lower bound

of the size ratio above which the motion of the solute is

Brownian is determined as σ2/σ1 ~ 5 since the value of ζD/

kT above this size ratio is independent on σ2/σ1, even though

it is not exactly 1 as expected by the Einstein relation. This

result is in accord with the earlier work of Ould-Kaddour

and Levesque that for M/m = 1, the crossover to the hydro-

dynamics regimes is found to occur when σ2/σ1 ~ 4.6

In summary, we have carried out micro-canonical mole-

cular dynamics (MD) simulations of a Lennard-Jones tracer

in a large solvent of similar molecules (N = 320,000). This

work was motivated by determination of the diffusion (D)

and friction (ζ) coefficients of the tracer in the thermo-

dynamic limit (N→∞) and by test of the SE formula. The

calculated viscosity (η) for the larger solvent-only system of

N = 320,000 is slightly larger than that for the smaller

system of N = 32,000 and D of the tracer is decreased

according to the SE formula by increasing the number of

solvent molecules. However, the obtained D of the tracer

from MD simulations is slightly increased for all values of

σ2/σ1. We found that the friction coefficients of the tracer for

both the larger and smaller systems vary linearly with σ2/σ1

in accord with the prediction of the Stokes law. From the

slopes of ζ vs. σ2/σ1, the estimated hydrodynamic boundary

conditions are equal to C = 3.1 and 2.9, respectively, for the

larger and smaller systems, compared with the Stokes law,

C = 4. The value of ζD/kT decreases initially as σ2/σ1

increases, and then levels off at σ2/σ1 independent values of

0.91 and 0.79, respectively, compared with the prediction by

the Einstein relation ζD/kT = 1 for all σ2/σ1. In order to

confirm these results it is necessary to carry out an MD

simulation for the system of N = 160,000 and this work is

presently under study.
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