• 제목/요약/키워드: Molecular Dynamic Simulation

검색결과 104건 처리시간 0.023초

실리콘 산화막의 플라즈마 식각에 대한 표면반응 모델링 (Surface Reaction Modeling for Plasma Etching of SiO2 Thin Film)

  • 임연호
    • Korean Chemical Engineering Research
    • /
    • 제44권5호
    • /
    • pp.520-527
    • /
    • 2006
  • 본 연구에서는 FC(fluorocarbon) 플라즈마 반응기에서 입사하는 이온에너지에 따른 고분자 증착, 식각과 증착의 경쟁반응 및 물리적 스퍼터링 등의 여러 표면 현상들을 모델링하였다. $SiO_2$ 식각에 대한 표면반응은 식각반응 영역을 잘 혼합된 CSTR(continuous stirred tank reactor) 가정을 도입하여 이온 도움에 의한 식각으로 모사되었다. 정상상태 고분자층을 통한 식각과 증착의 경쟁반응의 모델링은 이온 도움에 의한 고분자 생성 및 분해 메커니즘을 제안하여 수행하였다. 이러한 메커니즘은 최근 발표된 실험 및 분자동력학적 전산모사 결과에 기초하였으며,모델 계수들은 빔실험 결과 및 플라즈마 실험결과들을 이용하여 구하였다. 최종 개발된 모델의 결과들은 타당성을 검증하기 위해 문헌에 보고된 실험결과들과 비교하였다.

In-silico and structure-based assessment to evaluate pathogenicity of missense mutations associated with non-small cell lung cancer identified in the Eph-ephrin class of proteins

  • Shubhashish Chakraborty;Reshita Baruah;Neha Mishra;Ashok K Varma
    • Genomics & Informatics
    • /
    • 제21권3호
    • /
    • pp.30.1-30.13
    • /
    • 2023
  • Ephs belong to the largest family of receptor tyrosine kinase and are highly conserved both sequentially and structurally. The structural organization of Eph is similar to other receptor tyrosine kinases; constituting the extracellular ligand binding domain, a fibronectin domain followed by intracellular juxtamembrane kinase, and SAM domain. Eph binds to respective ephrin ligand, through the ligand binding domain and forms a tetrameric complex to activate the kinase domain. Eph-ephrin regulates many downstream pathways that lead to physiological events such as cell migration, proliferation, and growth. Therefore, considering the importance of Eph-ephrin class of protein in tumorigenesis, 7,620 clinically reported missense mutations belonging to the class of variables of unknown significance were retrieved from cBioPortal and evaluated for pathogenicity. Thirty-two mutations predicted to be pathogenic using SIFT, Polyphen-2, PROVEAN, SNPs&GO, PMut, iSTABLE, and PremPS in-silico tools were found located either in critical functional regions or encompassing interactions at the binding interface of Eph-ephrin. However, seven were reported in nonsmall cell lung cancer (NSCLC). Considering the relevance of receptor tyrosine kinases and Eph in NSCLC, these seven mutations were assessed for change in the folding pattern using molecular dynamic simulation. Structural alterations, stability, flexibility, compactness, and solvent-exposed area was observed in EphA3 Trp790Cys, EphA7 Leu749Phe, EphB1 Gly685Cys, EphB4 Val748Ala, and Ephrin A2 Trp112Cys. Hence, it can be concluded that the evaluated mutations have potential to alter the folding pattern and thus can be further validated by in-vitro, structural and in-vivo studies for clinical management.

브리징 스케일 기법을 이용한 분자동역학-연속체 연성 시스템의 설계민감도 해석 (Design Sensitivity Analysis of Coupled MD-Continuum Systems Using Bridging Scale Approach)

  • 차송현;하승현;조선호
    • 한국전산구조공학회논문집
    • /
    • 제27권3호
    • /
    • pp.137-145
    • /
    • 2014
  • 본 논문에서는 브리징 스케일 분해를 기반으로 멀티스케일 문제에 대한 설계민감도 해석법을 개발하였다. 나노 기술의 급속한 발전으로 인해 나노 수준의 해석의 필요성이 지속적으로 증가하고 있다. 최근 분자동역학과 연속체역학의 연성문제에서 많은 해석 방법들이 개발되었다. 본 논문에서는 연성시스템 해석을 위해 브리징 스케일 기법을 사용한다. 전체 영역의 분자동역학 시스템의 해석은 많은 양의 계산 비용이 들기때문에 분자동역학과 연속체 시뮬레이션의 연성시스템을 선호한다. 분자동역학과 연속체 수준 사이의 정보 교환은 분자동역학과 연속체의 경계에서 일어난다. 브리징 스케일 법에서 일반화된 랑지벵 방정식은 축소된 영역의 분자동역학 시스템 해석을 위하여 요구되고, 시간이력 커널을 사용하여 구한 GLE 힘은 분자동역학 시스템에서 경계에 있는 원자들에 작용한다. 그러므로 분자동역학과 연속체 수준의 시뮬레이션을 분리해서 해석할 수 있으며 계산 과정을 가속시킬 수 있다. 연성문제의 시뮬레이션 이후에는 설계의 최적화를 위해 설계민감도 해석의 필요성이 자연스럽게 나타나며 전체 시스템의 성능은 나노 스케일의 효과를 고려해서 최적화된다. 설계구배 기반 최적화에서 설계민감도가 요구되지만 유한차분법으로 구한 민감도는 문제가 대형화될 때 계산비용의 제한때문에 비실용적이나 해석적 설계민감도는 효율적인 강점을 갖는다. 본 연구에서는 연성된 분자동역학-연속체 멀티스케일 문제에서 해석적 설계민감도를 유도하여 정확성과 향후 최적설계로의 활용 가능성을 확인하였다.

인공생명체와 그들을 둘러싸는 환경으로 구성 되어지는 가상생태계 모델링 (Modeling Virtual Ecosystems that Consist of Artificial Organisms and Their Environment)

  • 이상희
    • 한국농림기상학회지
    • /
    • 제12권2호
    • /
    • pp.122-131
    • /
    • 2010
  • 본 논문은 가상 생태계의 개념과 가상생태계를 구현하는데 중요하게 사용되어 질 수 있는 세 가지 수학적-물리학적 접근법을 응용 예와 함께 소개 하였다. 가상생태계란 개체기반 모델로써 인공생명체들이 가상 환경하에서 스스로 행동하면서 살아가는 것을 모사하는 컴퓨터 내에 구현된 생태계를 의미한다. 생물의 무리행동을 전산 모사하는 분자동역학모사 접근법과, 흰개미 영토를 전산 모사하는 확률적 격자모델 접근법, 그리고 생물막 성장을 전산 모사하는 규칙기반-세포자동자모델 접근법을 소개하였다. 실 생태계와의 유사성을 높이기 위해 가상생태계 모델은 많은 변수들을 사용하여야 하지만, 기술적인 측면에서 이러한 변수들을 모두 결정하기는 어렵다. 그러나 현재의 눈부신 컴퓨터 성능향상에 힘입어 많은 부분이 극복 되어 지고 있다. 특히, 가상생태계는 기후변화와 같은 환경재앙을 포함하여 많은 복잡한 생태학적 현상을 개체수준의 낮은 계층에서부터 생물집단 또는 외부 환경수준과 같은 높은 계층까지를 통합적으로 이해하는데 큰 도움을 줄수 있을 것이다. 마지막으로 논문에서는 높은 수준의 계층인 기후변화가 낮은 수준의 계층인 개체기반의 흰개미 생태계에 미치는 복잡한 문제를 어떻게 다룰 수 있는지에 대한 예를 들고 간략하게 논의하였다.