• 제목/요약/키워드: Molecular Complementation

검색결과 68건 처리시간 0.027초

Characterization of a Chalcosyltransferase (gerGTII) in Dihydrochalcomycin Biosynthesis

  • Pageni, Binod Babu;Oh, Tae-Jin;Thuy, Ta Thi Thu;Sohng, Jae Kyung
    • Molecules and Cells
    • /
    • 제26권3호
    • /
    • pp.278-284
    • /
    • 2008
  • An open reading frame, designated GerGTII and located downstream of the polyketide synthase genes, has been identified as a chalcosyltransferase by sequence analysis in the dihydrochalcomycin biosynthetic gene cluster of Streptomyces sp. KCTC 0041BP. The deduced product of gerGTII is similar to several glycosyltransferases, authentic and putative, and it displays a consensus sequence motif that appears to be characteristic of a sub-group of these enzymes. Specific disruption of gerGTII within the S. sp. KCTC 0041BP genome by insertional in-frame deletion method, resulted complete abolishment of dihydrochalcomycin and got the 20-O-mycinosyl-dihydrochalconolide as intermediate product in dihydrochalcomycin biosynthesis which was confirmed by electron spray ionization-mass spectrometry and liquid chromatography-mass spectrometry. Dihydrochalcomycin also was recovered after complementation of gerGTII.

Functional Analysis of PepRSH (Pepper relA/spoT homolog) cloned from Capsicum annuum showing Systemic Acquired Resistance against Phytophthora capsici

  • Kim, Tae-Ho;Kim, Yeong-Tae;Byun, Myung-Ok;Shin, Jeong-Sheop;Go, Seoung-Joo
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.69.1-69
    • /
    • 2003
  • RSH (relA/spoT homolog) has been known to determine the level of guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp), which are the effector nucleotide of the prokaryotic stringent response and also play a role in antibiotic production and differentiation in Streptomyces species but not a little in eukaryotic organism, especially in plant. Salicylic acid (SA), a critical signal molecule of establishing systemic acquired resistance (SAR), could induce SAR in Pepper (Capcicum annuum) against Phytophthora capsici. And the extent of SAR induction was in proportion to the dosage of SA (or BTH). Suppression subtractive hybridization (SSH), a PCR-based method for cDNA subtraction, was carried out between SA-treated and non-SA-treated pepper leaves to isolate genes which may be responsible for defense signaling against pathogens. Early upregulated gene was selected from reverse northern and kinetics of SSH-genes transcripts in SA-treated pepper leaves upon SA treatment. Full-length cDNA of the gene (PepRSH; Pepper RelA / SpoT homolog) had an open reading frame (ORF) of 2166 bp encoding a protein of 722 amino acids and a significant homology with (p)ppGpp phosphohydrolase or synthetase. Genomic DNA gel blot analysis showed that pepper genome has at least single copy of PepRSH. PepRSH transcripts was very low in untreated pepper leaves but strongly induced by SA and methyljasmonic acid (MeJA), indicating that PepRSH may share common SA and MeJA-mediated signal transduction pathway Functional analysis in E. coli showed PepRSH confers phenotypes associated with (p)ppGpp synthesis through a complementation using active site mutagenesis.

  • PDF

Saccharomyces cerevisiae의 KGD1 유전자 결손이 세포벽 생합성에 미치는 영향 (Effect of KGD1 Deletion on Cell Wall Biogenesis in Saccharomyces cerevisiae)

  • 김성우;안기웅;박윤희;박희문
    • 한국균학회지
    • /
    • 제38권1호
    • /
    • pp.29-33
    • /
    • 2010
  • KGD1 유전자는 비허용온도에서 세포벽에 결함을 보이는 Saccharomyces cerevisiae LP0353 균주의 베타-1,3-글루칸 합성 효소의 활성을 회복시키는 유전자로 분리되었다. $\alpha$-ketoglutarate dehydrogenase를 암호화하는 KGD1 유전자의 효모의 세포벽 합성과 연관된 기능을 분석하기 위하여 유전자 파괴를 시도하였다. KGD1돌연변이는 생장속도가 감소하고, 키틴 합성 효소들의 활성이 증가하였으며, 세포벽 구성 당류의 함량에 변화를 보였다. 또한 Calcofluor white과 Nikkomycin Z 등과 같은 세포벽 합성 저해물질에 대해 감수성 변화를 나타냈다. 이러한 결과들은 KGD1이 효모의 세포벽 특히 베타-1,6-글루칸과 키틴의 생합성에 영향을 주고 있음을 시사한다.

SMAD4 Controls Cancer Cell Metabolism by Regulating Methylmalonic Aciduria Cobalamin Deficiency (cbl) B Type

  • Song, Kyoung;Lee, Hun Seok;Jia, Lina;Chelakkot, Chaithanya;Rajasekaran, Nirmal;Shin, Young Kee
    • Molecules and Cells
    • /
    • 제45권6호
    • /
    • pp.413-424
    • /
    • 2022
  • Suppressor of mothers against decapentaplegic homolog (SMAD) 4 is a pluripotent signaling mediator that regulates myriad cellular functions, including cell growth, cell division, angiogenesis, apoptosis, cell invasion, and metastasis, through transforming growth factor β (TGF-β)-dependent and -independent pathways. SMAD4 is a critical modulator in signal transduction and functions primarily as a transcription factor or cofactor. Apart from being a DNA-binding factor, the additional SMAD4 mechanisms in tumor suppression remain elusive. We previously identified methyl malonyl aciduria cobalamin deficiency B type (MMAB) as a critical SMAD4 binding protein using a proto array analysis. This study confirmed the interaction between SMAD4 and MMAB using bimolecular fluorescence complementation (BiFC) assay, proximity ligation assay (PLA), and conventional immunoprecipitation. We found that transient SMAD4 overexpression down-regulates MMAB expression via a proteasome-dependent pathway. SMAD4-MMAB interaction was independent of TGF-β signaling. Finally, we determined the effect of MMAB downregulation on cancer cells. siRNA-mediated knockdown of MMAB affected cancer cell metabolism in HeLa cells by decreasing ATP production and glucose consumption as well as inducing apoptosis. These findings suggest that SMAD4 controls cancer cell metabolism by regulating MMAB.

Amygdalin Modulates Cell Cycle Regulator Genes in Human Chronic Myeloid Leukemia Cells

  • Park, Hae-Jeong;Baik, Haing-Woon;Lee, Seong-Kyu;Yoon, Seo-Hyun;Zheng, Long-Tai;Yim, Sung-Vin;Hong, Seon-Pyo;Chung, Joo-Ho
    • Molecular & Cellular Toxicology
    • /
    • 제2권3호
    • /
    • pp.159-165
    • /
    • 2006
  • To determine the anticancer effect of D-amygdalin (D-mandelinitrole-${\beta}$-D-gentiobioside) in human chronic myeloid leukemia cells K562, we profiled the gene expression between amygdalin treatment and control groups. Through 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, the cytotoxicity of D-amygdalin was $57.79{\pm}1.83%$ at the concentration of 5 mg/mL for 24 h. We performed cDNA microarray analysis and compared the gene expression profiles between D-amygdalin (5 mg/mL, 24 h) treatment and control groups. Among the genes changed by D-amygdalin, we paid attention to cell cycle-related genes, and particularly cell cycle regulator genes; because arrest of cell cycle processing was ideal tactic in remedy for cancer. In our data, expressions of cyclin-dependent kinase inhibitor 1B (p27, Kip1) (CDKN1B), ataxia telangiectasia mutated (includes complementation groups A, C, and D) (ATM), cyclin-dependent kinase inhibitor 1C (p57, Kip2) (CDKN1C), and CHK1 checkpoint homolog (CHEK1, formally known as CHK1) were increased, while expressions of cyclin-dependent kinase 2 (CDK2), cell division cycle 25A (CDC25A), and cyclin E1 (CCNE1) were decreased. The pattern of these gene expressions were confirmed through RT-PCR. Our results showed that D-amygdalin might control cell cycle regulator genes and arrest S phase of cell cycle in K562 cells as the useful anticancer drug.

Cloning, Expression, and Functional Characterization of the Dunaliella salina 5-enolpyruvylshikimate-3-phosphate Synthase Gene in Escherichia coli

  • Yi, Yi;Qiao, Dairong;Bai, Linhan;Xu, Hui;Li, Ya;Wang, Xiaolin;Cao, Yi
    • Journal of Microbiology
    • /
    • 제45권2호
    • /
    • pp.153-157
    • /
    • 2007
  • 5-enolpyruvylshikimate-3-phosphate synthase (EPSP synthase, EC 2.5.1.19) is the sixth enzyme in the shikimate pathway which is essential for the synthesis of aromatic amino acids and many secondary metabolites. The enzyme is widely involved in glyphosate tolerant transgenic plants because it is the primary target of the nonselective herbicide glyphosate. In this study, the Dunaliella salina EPSP synthase gene was cloned by RT-PCR approach. It contains an open reading frame encoding a protein of 514 amino acids with a calculated molecular weight of 54.6 KDa. The derived amino acid sequence showed high homology with other EPSP synthases. The Dunaliella salina EPSP synthase gene was expressed in Escherichia coli and the recombinant EPSP synthase were identified by functional complementation assay.

Cloning of the Genomic DNA Which Complements the Drug-Hypersensitivity of Saccharomyces cerevlsiae

  • Lee, Yun-Sik;Park, Kie-In
    • BMB Reports
    • /
    • 제30권3호
    • /
    • pp.167-172
    • /
    • 1997
  • The yeast Saccharomyces cerevisiae, mutant CH117, shows a drug-hypersensitivity (dhs) to cycloheximide, bleomycin, actinomycin D, 5-fluorouracil. nystatin, nigericin and several other antibiotics. CH 117 was also temperature-sensitive (ts). being unable to grow at $37^{\circ}C$ and secreted more invertase and acid phosphatase into the medium than the parent yeast. CH117 grows very slowly and the cell shape is somewhat larger and more sensitive to zymolyase than the wild type cells. Light microscopic and electron microscopic observation also revealed abnormality of the mutant cell wall. These characteristics indicate that CH117 has a defect in an essential component of the cell surface and that the cell wall which performs barrier functions has become leaky in the mutant. We screened a genomic library of wild type yeast for clones that can complement the mutation of CH117. A plasmid, pCHX1, with an insert of 3.6 kilobases (kbs) could complement the dhs and ts of CH117. Deletion and subcloning of the 3.6 kb insert showed that a gene for the complementation of mutant phenotypes was located in 1.9 kbs Puvll-Hindlll fragment.

  • PDF

Cloning of the Alkaline Phosphatase Gene from Kluyveromyces fragilis

  • Kim, Jong-Guk;Hwang, Seon-Kap;Kwon, Kaeg-Kyu;Nam, Joo-Hyun;Hong, Soon-Duck;Seu, Jung-Hwn
    • Journal of Microbiology and Biotechnology
    • /
    • 제2권4호
    • /
    • pp.237-242
    • /
    • 1992
  • In order to clone the gene coding for alkaline phosphatase in the yeast Kluyveromyces fragilis, a genomic library was constructed using the yeast-E. coli shuttle vector pHN114 as a cloning vector. From the genomic library, a clone carrying the gene was isolated and the plasmid was designated as pSKH101. A restriction enzyme map was made using this plasmid. Subcloning experiments and complementation studies showed that alkaline phosphatase was active only in the original 3.1 kb insert. Southern hybridization analysis confirmed that the cloned DNA fragment was derived from K. fragilis genomic DNA. Using a minicell experiment, the product of the cloned gene was identified as a protein with a molecular weight of 63 KDa. A 0.6 kb HindIII fragment, which showed promoter activity, was isolated using the E. coli promoter-probe vector pKO-1.

  • PDF

Cloning and Characterization of the Mycobacterium bovis BCG panB Gene Encoding Ketopantoate Hydroxymethyltransferase

  • Kim, Jin-Koo;Kim, Kwang-Dong;Lim, Jong-Seok;Lee, Hee-Gu;Kim, Sang-Jae;Cho, Sang-Hyun;Jeong, Won-Hwa;Choe, In-Seong;Chung, Thi-Wha;Paik, Sang-Gi;Choe, Yong-Kyung
    • BMB Reports
    • /
    • 제34권4호
    • /
    • pp.342-346
    • /
    • 2001
  • The Mycobacterium bovis BCG panB gene, encoding ketopantoate hydroxymethyltransferase (KPHMT), was cloned from a ${\lambda}gt11$ genomic library and sequenced. The DNA sequence encodes a protein that contains 281 amino acid residues (M, 29,337) with a high similarity to the KPHMTs. Subcloning of a 846 by open reading frame (ORF), but not a 735 by ORF, into the vector pUC19 led to complementation of the panB mutant of Escherichia coli. The BCG pang gene was overexpressed in E. coli and the KPHMT purified to homogeneity The recombinant protein was further confirmed by an enzymatic assay.

  • PDF

ASIC2a-dependent increase of ASIC3 surface expression enhances the sustained component of the currents

  • Kweon, Hae-Jin;Cho, Jin-Hwa;Jang, Il-Sung;Suh, Byung-Chang
    • BMB Reports
    • /
    • 제49권10호
    • /
    • pp.542-547
    • /
    • 2016
  • Acid-sensing ion channels (ASICs) are proton-gated cation channels widely expressed in the nervous system. Proton sensing by ASICs has been known to mediate pain, mechanosensation, taste transduction, learning and memory, and fear. In this study, we investigated the differential subcellular localization of ASIC2a and ASIC3 in heterologous expression systems. While ASIC2a targeted the cell surface itself, ASIC3 was mostly accumulated in the ER with partial expression in the plasma membrane. However, when ASIC3 was co-expressed with ASIC2a, its surface expression was markedly increased. By using bimolecular fluorescence complementation (BiFC) assay, we confirmed the heteromeric association between ASIC2a and ASIC3 subunits. In addition, we observed that the ASIC2a-dependent surface trafficking of ASIC3 remarkably enhanced the sustained component of the currents. Our study demonstrates that ASIC2a can increase the membrane conductance sensitivity to protons by facilitating the surface expression of ASIC3 through herteromeric assembly.