• Title/Summary/Keyword: Molecular Communication

Search Result 230, Processing Time 0.026 seconds

Rapid Thermal Annealing of GaN EpiLayer grown by Molecular Beam Epitaxy (MBE로 성장한 GaN 에피층의 급속 열처리)

  • Choi, Sung-Jai;Lee, Won-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.7-13
    • /
    • 2010
  • We have investigated effects of the rapid thermal annealing of GaN epilayers by molecular beam epitaxy in nitrogen atmosphere. The improvement of structural properties of the samples was observed after rapid thermal annealing under optimum conditions. This improvement in crystal quality is due to a reduction of the spread in the lattice parameter in epilayers. The annealing has been performed in a rapid thermal annealing furnace at $950^{\circ}C$. The effect of rapid thermal annealing on the structural properties of GaN was studied by x-ray diffraction. The Bragg peak shifts toward larger angle as the annealing time increases. As the thermal treatment time increases, FWHM(full width at half maximum) of the peak slightly increase with its decreases followed and it increases again. Results demonstrate that rapid thermal annealing did not always promote qualities of GaN epilayers. However, rapid thermal annealing under optimum conditions improve structural properties of the samples, elevating their crystal quality with a reduction of inaccuracy in the lattice parameter of the epilayers.

The behavior of collagen-like molecules in response to different temperature setting methods in steered molecular dynamic simulation (다른 온도 조절 상태에서 분자 동역학에서 콜라겐 단백질의 거동)

  • Yoon, Young-June;Cho, Kang-Hee;Han, Seog-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.397-402
    • /
    • 2020
  • Collagen type I is the most abundant protein in the human body. It shows viscoelastic behavior, which is what confers tendons with their viscoelastic properties. There are two different temperature setting methods in molecular dynamics simulations, namely rescaling and reassignment. The rescaling method maintains the temperature by scaling the given temperature, while the reassignment method sets the temperature according to a Maxwell distribution at the target temperature. We observed time-dependent behavior when the reassignment method was applied in tensile simulation, but not when the rescaling method was applied. Time-dependent behavior was observed only when the reassignment method was applied or when one side of the collagen molecule was stretched to a greater extent than the other side. As result, the collagen is elongated to 80nm, 100nm, 130nm, and 180nm, respectively, when the collagen is pulled by different velocities, 0.5, 1, 2, and 5 Å/ps, up to 40 Å. The results do not provide a detailed physical explanation, but the phenomena illustrated in this result are important for caution when further simulations are performed.

Fabrication of Solution-Based Cylindrical Microlens with High Aspect Ratio (고종횡비를 갖는 용액기반 원통형 마이크로렌즈 제조)

  • Jeon, Kyungjun;Lee, Jinyoung;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.70-76
    • /
    • 2021
  • A cylindrical microlens (CML) has been widely used as an optical element for organic light-emitting diodes (OLEDs), light diffusers, image sensors, 3D imaging, etc. To fabricate high-performance optoelectronic devices, the CML with high aspect ratio is demanded. In this work, we report on facile solution-based processes (i.e., slot-die and needle coatings) to fabricate the CML using poly(methyl methacrylate) (PMMA). It is found that compared with needle coating, slot-die coating provides the CML with lower aspect ratio due to the wide spread of solution along the hydrophilic head lip. Although needle coating provides the CML with high aspect ratio, it requires a high precision needle array module. To demonstrate that the aspect ratio of CML can be enhanced using slot-die coating, we have varied the molecular weight of PMMA. We can achieve the CML with higher aspect ratio using PMMA with lower molecular weight at a fixed viscosity because of the higher concentration of PMMA solute in the solution. We have also shown that the aspect ratio of CML can be further boosted by coating it repeatedly. With this scheme, we have fabricated the CML with the width of 252 ㎛ and the thickness of 5.95 ㎛ (aspect ratio=0.024). To visualize its light diffusion property, we have irradiated a laser beam to the CML and observed that the laser beam spreads widely in the vertical direction of the CML.

Gene Selection using Principal Component Analysis for Molecular classification (Principal Component Analysis를 이용한 Gene Selection)

  • Lim Soo-Hong;Sohn Kirack;Hong Sung-Yong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.259-261
    • /
    • 2005
  • 수천개의 Gene Expression Measurement를 생성해 내는 DNA Microarray 연구는 조직과 세포의 표본으로부터 진단에 유용한 Gene Expression 정보를 모으게 된다. 이런 종류의 Data를 분석하기 위하여 SVM(Support Vector Machine)을 사용한 새로운 방법이 연구되어왔다. 본 논문에서는 Gene Expression Data에 대한 고유벡터(Eigen Vector)를 이용하여 SVM의 성능을 향상시키고 질병진단에 유용한 Gene을 찾아 내는 알고리즘을 기술한다. 고유벡터를 통하여 Gene을 선택적으로 SVM Learning에 참가 시키고 분류의 결과를 통하여 추가된 Gene이 질병 진단에 미치는 영향력을 알아냄으로써 질병에 대한 Gene 역할을 파악 하는데 활용할 수 있다.

  • PDF

Ligand Based Pharmacophore Identification and Molecular Docking Studies for Grb2 Inhibitors

  • Arulalapperumal, Venkatesh;Sakkiah, Sugunadevi;Thangapandian, Sundarapandian;Lee, Yun-O;Meganathan, Chandrasekaran;Hwang, Swan;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1707-1714
    • /
    • 2012
  • Grb2 is an adapter protein involved in the signal transduction and cell communication. The Grb2 is responsible for initiation of kinase signaling by Ras activation which leads to the modification in transcription. Ligand based pharmacophore approach was applied to built the suitable pharmacophore model for Grb2. The best pharmacophore model was selected based on the statistical values and then validated by Fischer's randomization method and test set. Hypo1 was selected as a best pharmacophore model based on its statistical values like high cost difference (182.22), lowest RMSD (1.273), and total cost (80.68). It contains four chemical features, one hydrogen bond acceptor (HBA), two hydrophobic (HY), and one ring aromatic (RA). Fischer's randomization results also shows that Hypo1 have a 95% significant level. The correlation coefficient of test set was 0.97 which was close to the training set value (0.94). Thus Hypo1 was used for virtual screening to find the potent inhibitors from various chemical databases. The screened compounds were filtered by Lipinski's rule of five, ADMET and subjected to molecular docking studies. Totally, 11 compounds were selected as a best potent leads from docking studies based on the consensus scoring function and critical interactions with the amino acids in Grb2 active site.

Facile Synthesis of Porous TiO2 Nanopearl and Nanorice toward Visible-Light Photocatalysts

  • Lee, Jooran;Bae, Eunju;Yoon, Minjoong
    • Rapid Communication in Photoscience
    • /
    • v.1 no.1
    • /
    • pp.13-15
    • /
    • 2012
  • New porous $TiO_2$ nanostructures with shapes of pearl and rice were synthesized by hydrothermal treatment of $TiO_2$-liposome nanocomposites in acid and base solutions, respectively, as identified by scanning electron microscopy (SEM), transmission electron microscopy (TEM) images and large Brunauer-Emmett-Teller (BET) surface areas. The x-ray diffraction (XRD) patterns and selected area electron diffraction proved them to be well-defined anatase crystals. Their UV-visible reflectance absorption spectra were observed to have low band gap energy (3.03 and 3.07 eV, respectively), exhibiting surface absorption band in the visible range from 400 to 600 nm. The degradation of methylene blue (MB) over the $TiO_2$ nanostructures was observed upon visible-light irradiation, which was found to be very efficient as compared with any other conventional visible-light responsive $TiO_2$ nanostructures.

New Insights into the Role of E2s in the Pathogenesis of Diseases: Lessons Learned from UBE2O

  • Hormaechea-Agulla, Daniel;Kim, Youngjo;Song, Min Sup;Song, Su Jung
    • Molecules and Cells
    • /
    • v.41 no.3
    • /
    • pp.168-178
    • /
    • 2018
  • Intracellular communication via ubiquitin (Ub) signaling impacts all aspects of cell biology and regulates pathways critical to human development and viability; therefore aberrations or defects in Ub signaling can contribute to the pathogenesis of human diseases. Ubiquitination consists of the addition of Ub to a substrate protein via coordinated action of E1-activating, E2-conjugating and E3-ligating enzymes. Approximately 40 E2s have been identified in humans, and most are thought to be involved in Ub transfer; although little information is available regarding the majority of them, emerging evidence has highlighted their importance to human health and disease. In this review, we focus on recent insights into the pathogenetic roles of E2s (particularly the ubiquitin-conjugating enzyme E2O [UBE2O]) in debilitating diseases and cancer, and discuss the tantalizing prospect that E2s may someday serve as potential therapeutic targets for human diseases.

High molecular weight water-soluble chitosan acts as an accelerator of macrophages activation by recombinant interferon ${\gamma}$ via a process involving $_L$-arginine -dependent nitric oxide production

  • Kim, Hyung-Min
    • Advances in Traditional Medicine
    • /
    • v.1 no.1
    • /
    • pp.71-81
    • /
    • 2000
  • High molecular weight water-insoluble chitosan alone has been previously shown to exhibit in vitro stimulatory effect on macrophages nitric oxide (NO) production. However, high molecular weight water-soluble chitosan (WSC) had no effect on NO production by itself. When WSC was used in combination with recombinant $interferon-{\gamma}\;(Rifn-{\gamma})$, there was a marked cooperative induction of NO synthesis in a dose-dependent manner. The optimal effect of WSC on NO synthesis was shown at 24 h after treatment with $rIFN-{\gamma}$. The increased production of NO from $rIFN-{\gamma}$ plus WSC-stimulated RAW 264.7 macrophages was decreased by the treatment with $N^G$ $monomethyl-_L-arginine$. The increase in NO synthesis was reflected, as an increased amounts of inducible NO synthase (iNOS) protein. Synergy between $rIFN-{\gamma}$ and WSC was mainly dependent on WSC-induced nuclear $factor-_KB$ activation. The present results indicate that WSC may provide various activities such as anti-microbial, anti-tumoral, and anti-viral. In addition, since NO has emerged as an important intracellular and intercellular regulatory molecule having functions as diverse as vasodilation, neural communication, cell growth regulation and host defense, it is tempting to hypothesize that this WSC is involved in the local control of the various fundamental processes such as cardiagra, cardiac infarction, impotence etc.

  • PDF

Immune cell-derived small extracellular vesicles in cancer treatment

  • Choi, Sung-Jin;Cho, Hanchae;Yea, Kyungmoo;Baek, Moon-Chang
    • BMB Reports
    • /
    • v.55 no.1
    • /
    • pp.48-56
    • /
    • 2022
  • Small extracellular vesicles (sEVs) secreted by most cells carry bioactive macromolecules including proteins, lipids, and nucleic acids for intercellular communication. Given that some immune cell-derived sEVs exhibit anti-cancer properties, these sEVs have received scientific attention for the development of novel anti-cancer immunotherapeutic agents. In this paper, we reviewed the latest advances concerning the biological roles of immune cell-derived sEVs for cancer therapy. sEVs derived from immune cells including dendritic cells (DCs), T cells, natural-killer (NK) cells, and macrophages are good candidates for sEV-based cancer therapy. Besides their role of cancer vaccines, DC-shed sEVs activated cytotoxic lymphocytes and killed tumor cells. sEVs isolated from NK cells and chimeric antigen receptor (CAR) T cells exhibited cytotoxicity against cancer cells. sEVs derived from CD8+ T and CD4+ T cells inhibited cancer-associated cells in tumor microenvironment (TME) and activated B cells, respectively. M1-macrophage-derived sEVs induced M2 to M1 repolarization and also created a pro-inflammatory environment. Hence, these sEVs, via mono or combination therapy, could be considered in the treatment of cancer patients in the future. In addition, sEVs derived from cytokine-stimulated immune cells or sEV engineering could improve their anti-tumor potency.

Synthesis and Properties of Blue Emitting Polymers Containing Carbazole Groups

  • Kwon, Young-Hwan;Wang, Hui;Kim, Yeon-Bo;Ryu, Jeong-Tak;Chang, Seung-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.473-474
    • /
    • 2005
  • Blue-emitting polymers containing carbazole units In main chains were synthesized by palladium catalyzed polycondensation of aniline with dibromo-substituted monomers such as 3,6-dibromocarbazole, N-(2-ethylhexyl)-3,6-dibromocarbazole, and bis[6-bromo-N-(2-ethylhexyl)-carbazole-3-yl], respectively. All synthesized polymers exhibited relatively good solubility in common organic solvents, considerable molecular weights and high resistance to thermal degradation. From UV-Vis absorption and photoluminescence (PL) spectra of these solution-processable polymers, $\lambda_{max,UV}$ were in the range of 290 ~ 340 nm and $\lambda_{max,PL}$ were in the blue emission range of 440 ~ 478 nm, The polymers had HOMO energy (-5.19 ~ -5.64 eV) and wide band gap energy (2,91 - 3.42 eV).

  • PDF