• Title/Summary/Keyword: Molecular

Search Result 31,346, Processing Time 0.057 seconds

Radiolabeling Methods Used for Preparation of Molecular Probes (분자영상 방사성추적자의 생산에 사용되는 방사성동위 원소 표지방법)

  • Choe, Yearn-Seong
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.2
    • /
    • pp.121-130
    • /
    • 2004
  • Molecular imaging visualizes cellular processes at a molecular or genetic level in living subjects, and diverse molecular probes are used for this purpose. Radiolabeling methods as well as radioisotopes are very important in preparation of molecular probes, because they can affect the biodistribution in tissues and the excretion route. In this review, the molecular probes are divided into small organic molecules and macromolecules such as peptides and proteins, and their commonly used radiolabeling methods are described.

An ab Initio Predictive Study on Solvent Polarity (용매 극성도의 이론적 예측 연구)

  • Park, Min-Kyu;Cho, Soo-Gyeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.154-160
    • /
    • 2008
  • We investigated molecular polarity by using theoretical means and comparing empirical solvent polarity. Our approach employed electrostatic potentials at the molecular surface calculated by density functional methods. A number of molecular descriptors related to molecular polarities were computed from molecular surface electrostatic potentials. Among computed molecular descriptors, the most positive electrostatic potential provided the best correlation with the empirical solvent polarities. A regression equation was developed in order to predict molecular polarities of molecules whose experimental solvent polarities were unknown. The new regression equations were utilized in estimating solvent polarities of cubane derivatives which are considered important precusors of high-energy density meterials.

Molecular imaging application of iron oxide nanoradiomaterial

  • Ran Ji Yoo;Ji Yong Park;Tae Hyeon Choi;Jin Sil Kim;Yun-Sang Lee
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.7 no.2
    • /
    • pp.133-140
    • /
    • 2021
  • Various iron oxide nanoparticle-based radiomaterials(IO-NRM) can be used for multimodal imaging of magnetic resonance imaging and molecular imaging, can be easily sized, can be easily functionalized, and have biocompatibility, making them a very good platform for molecular imaging. Based on the previously revealed molecular imaging technology of iron oxide nanoparticles, this paper introduces the in vivo distribution and use in various diseases through iron oxide nanoparticles-based radiolabeled compounds for diagnosis and treatment of iron oxide nanoparticles-based molecular imaging platforms. We would like to look forward to its potential as a radiopharmaceutical.

Radix Sophorae Flavescentis inhibits proliferation and induces apoptosis of AGS human gastric cancer cells

  • Ji Sun Kim;Seung Jae Shin;Jung Nam Kim;Min Ji Kwon;Eun Yeong Lim;Yun Tai Kim;Hyungwoo Kim;Byung Joo Kim
    • Molecular Medicine Reports
    • /
    • v.19 no.3
    • /
    • pp.1911-1918
    • /
    • 2019
  • Traditional herbal medicines are being increasingly used worldwide to treat cancer. Radix Sophorae Flavescentis (RSF) is a Chinese herb, which has numerous pharmacological properties, including anti-tumour effects. In this study, we investigated the mechanisms underlying RSF-induced apoptosis in human gastric cancer cells (AGS cells). We found that RSF treatment (20-200 ㎍/ml) inhibited the proliferation of AGS cells and increased the sub-G1 phase ratio. RSF-induced cell death was associated with the downregulation of BCl-2 and upregulation of Bax. In addition to increasing the expression levels of apoptosis-mediating surface antigen FAS and Fas ligand, RSF also activated caspase-3; however, mitogen-activated protein kinase appeared to inhibit RSF-induced cell death. RSF also led to an increased production of reactive oxygen species. Based on these results, we propose that RSF could be a potential therapeutic agent for gastric cancer.