• Title/Summary/Keyword: Mole Fraction

Search Result 402, Processing Time 0.025 seconds

Analysis for Spray Flow Using PSIC Model in Combustion Chamber of Liquid Rocket Engine (PSIC 모델을 이용한 액체로켓의 연소실내 분무유동 해석)

  • Jeong Dae-Kwon;Roh Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.253-256
    • /
    • 2006
  • A numerical study for spray flow of fuel and oxidizer droplets in the combustion chamber has been conducted prior to the analysis of spray combustion of the liquid rocket engine. As the spray combustion model, DSF model and Euler-Lagrange scheme have been used. While the coupling effects of the droplets between gas phase and evaporated vapor have been calculated using PSIC model, SIMPLER algorithm and QUICK scheme have been used as numerical schemes. As the results, the calculations have shown velocity and temperature distribution in combustion chamber as well as mole fraction of fuel and oxidizer.

  • PDF

The Effect of Operating Conditions on the Heat-flow Characteristics and Reforming Efficiency of Steam Reformer with Combustor (연소기가 장착된 수증기 개질기에서 운전조건이 열유동 특성 및 개질효율에 미치는 영향)

  • Kim, Ji-Seok;Lee, Jae-Seong;Kim, Ho-Young
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.1
    • /
    • pp.36-45
    • /
    • 2011
  • The heat-flow characteristics and reforming efficiency of steam reformer with combustor are numerically investigated at various operating conditions. SCR(Steam to Carbon Ratio) and GHSV(Gas Hourly Space Velocity) are adopted as important operating conditions. User-Defined-Function(UDF) was used to simultaneously calculate reforming and combustion reaction. Numerical results show that hot burned gas rise by a buoyant force and heat exchange between reforming reactors and cocurrent flow occurs in the combustion region. The results also indicate that an increase of SCR leads to decrease the mole fraction of hydrogen at the reactor outlet. As GHSV increases, conversion rate decreases.

Flammability Limit and Flame Instability of Nitrogen-Diluted LPG Fuel (질소로 희석된 LPG 연료의 가연한계와 화염 안정성)

  • Ahn, Taekook;Nam, Younwoo;Lee, Kyung-Woo;Lee, Wonnam
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.319-321
    • /
    • 2012
  • The flammability limit and the flame instability of nitrogen-diluted LPG fuel was experimentally studied on a co-flow flame configuration. The combustion reaction of nitrogen-diluted hydrocarbon with air could be interpreted as the equivalent reaction of pure fuel with nitrogen-diluted air. Nitrogen-diluted LPG with nitrogen up to 90 % of nitrogen mole fraction in fuel, which is close to the flammability limit, could form a co-flow flame. Various parameters such as laminar or turbulent flame, the existence of diffusion flame with pure fuel, air temperature could affect the limit of flame formation.

  • PDF

The study of the high dielectric thin films for MLCC (적층형 커패시터의 응용을 위한 고유전 박막 재료의 연구)

  • 장범식;최원석;문상일;장동민;홍병유;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.836-839
    • /
    • 2001
  • Ba(Zr$_{x}$Ti$_{l-x}$)O$_3$(BZT) thin films of x=0.2 and 150nm thickness were prepared on Pt/SiO$_2$/Si substrate by RF Magnetron Sputtering deposition at several temperature (40$0^{\circ}C$, 50$0^{\circ}C$, $600^{\circ}C$). As the substrates temperature increase, crystallization of the films and high dielectric constants can be obtained. Capacitance of the film deposited at high temperature is more sensitive to the applied voltage than that of the film deposited at low temperature, and the film's breakdown voltage is higher in low temperature.ure.

  • PDF

Investigation of vapor-liquid equilibrium of HFC125/134a system (HFC125/134a계의 기-액상평형에 관한 연구)

  • 김창년;박영무
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.2
    • /
    • pp.238-250
    • /
    • 1998
  • Vapor-liquid equilibrium apparatus is designed and set up. The vapor-liquid equilibrium data of the binary system HFC125/134a are measured in the range between 268.15 and 283.15K at five compositions. Twenty-five equilibrium data are obtained. To verify consistency of these data, they are tested for thermodynamic consistency. Based upon the present data, the binary interaction parameter for CSD and RKS equation of state is calculated at five isotherms and comparison with the data in the open literatures is made. Results of Nagel and Bier are in very good agreements with those from this study within 0.32∼1.11% for bubble point pressure and -0.66∼0.18% for vapor mole fraction.

  • PDF

Co-sputtering of Microcrystalline SiGe Thin Films for Optoelectronic Devices

  • Kim, Seon-Jo;Kim, Hyeong-Jun;Kim, Do-Yeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.64.2-64.2
    • /
    • 2011
  • Recently, Silicon Germanium (SiGe) alloys have been received considerable attention for their great potentials in advanced electronic and optoelectronic devices. Especially, microcrystalline SiGe is a good channel material for thin film transistor due to its advantages such as narrow and variable band gap and process compatibility with Si based integrated circuits. In this work, microcrystalline silicon-germanium films (${\mu}c$-SiGe) were deposited by DC/RF magnetron co-sputtering method using Si and Ge target on Corning glass substrates. The film composition was controlled by changing DC and RF powers applied to each target. The substrate temperatures were changed from $100^{\circ}C$ to $450^{\circ}C$. The microstructure of the thin films was analyzed by x-ray diffraction (XRD) and Raman spectroscopy. The analysis results showed that the crystallinity of the films enhances with increasing Ge mole fraction. Also, crystallization temperature was reduced to $300^{\circ}C$ with $H_2$ dilution. Hall measurements indicated that the electrical properties were improved by Ge alloying.

  • PDF

Hall mobility in $Si_{1-x}Ge_{x}$/Si structure ($Si_{1-x}Ge_{x}$/Si 구조에서의 Hall 이동도)

  • 강대석;신창호;박재우;송성해
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.453-456
    • /
    • 1998
  • The electrical properties of $Si_{1-x}Ge_{x}$ samples have been investigated. The sample structures were grown by MBE (molecular geam epitaxy) with Ge mole-fraction of x=0.0, x=0.05, x=0.1, and x=0.2. To examine the influence of the thermal processing, the $O_{2}$ and N$_{2}$ process were performed at 800[.deg. C] and 900[.deg. C], respectively. After this thermal process, hall measurements have been done over a wide range of the ambient temperature between 320[.deg. K] and 10[.deg. K] to find the temperature dependence using the comparessed-He gas system. The Ge-rich layer has been formed at the $SiO_{2}$/SiGe interface and it has an effect on the hall mobility. And it has been found that hall mobility was increased by the $N_{2}$ annealing process comparing with dry oxidation process at both 800[.deg.C] and900[.deg. C].

  • PDF

Tunneling Current Contribution to RoA of $Hg_{1-x}Cd_{x}$Te Photodiodes ($Hg_{1-x}Cd_{x}$Te 광다이오드에서 터널링 전류가 RoA에 미치는 영향)

  • 박장우;곽계달
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.10
    • /
    • pp.42-48
    • /
    • 1992
  • RoA is an important figure of merits for estimating the performance of p-n junction infrared detectors. This paper presents the tunneling current contribution to RoA of $Hg_{1-x}Cd_{x}$Te n$^{+}$-p juction photodiodes. Then, a diffusion model, a thermal generation-recombination model, an indirect tunneling model via trap, and a band-to-band direct tunneling model are considered to calculate RoA. Using these models, RoA depending on temperature, doping concentration, and mole fraction is calculated. Also from these results, under various operating conditions the dominant dark current mechanisms cna be understood.

  • PDF

Design of an AlGaAs/GaAs Double-Heterojunction Power FET (AlGaAs/GaAs double-heterojunction 전력용 FET의 설계)

  • 박인식;김상명;신석현;이진구;신재호;김도현
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.8
    • /
    • pp.57-62
    • /
    • 1993
  • In this paper, both feasible power gain and power added efficiency at the operating center frequency of 12 GHz are stressed to design a power FET with double-heterjunction structure. The variable parameters or the design are the unit gate width, the gate length, the doping density of AlGaAs, the AlGaAs thickness, the spacer thickness, the Al mole fraction, and the GaAs well thickness. The results of simulation for the FET with 1.mu.m gate length show that the power gain and the power added efficiency are 10.2 dB and 36.3% at 12GHz, respectively. An extrapolation of the relation between current gain and unilateral gain yields a 17 GHz cutoff frequency and 43GHz maximum frequency of oscillation. The calculation of the current versus voltage characteristics show that the output power of the device is about 0.62W.

  • PDF