• Title/Summary/Keyword: Molding machine

Search Result 276, Processing Time 0.024 seconds

Ultrasonically Assisted Grinding for Mirror Surface Finishing of Dies with Electroplated Diamond Tools

  • Isobe, Hiromi;Hara, Keisuke;Kyusojin, Akira;Okada, Manabu;Yoshihara, Hideo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.38-43
    • /
    • 2007
  • This paper describes ultrasonically assisted grinding used to obtain a glossy surface quickly and precisely. High-quality surfaces are required for plastic injection molding dies used in the production of plastic parts such as dials for cellular phones. Traditionally, in order to finish the dies, manual polishing by a skilled worker has been required after the machining processes, such as electro discharge machining (EDM), which leaves an affected layer, and milling, which leaves tooling marks. However, manual polishing causes detrimental geometrical deviations of the die and consumes several days to finish a die surface. Therefore, a machining process for finishing dies without manual polishing to improve the surface roughness and form accuracy would be extremely valuable. In this study, a 3D positioning machine equipped with an ultrasonic spindle was used to conduct grinding experiments. An electroplated diamond tool was used for these experiments. Generally, diamond tools cannot grind steel because of excessive wear as a result of carbon atoms diffusing into bulk steel and chips. However, ultrasonically assisted grinding can achieve a fine surface (roughness Rz of $0.4{\mu}m$) on die steel without severe tool wear. The final aim of this study is to realize mirror surface grinding for injection molding dies without manual polishing. To do this, it is necessary to fabricate an electroplated diamond tool with high form accuracy and low run-out. This paper describes a tool-making method for high precision grinding and the grinding performance of a self-electroplated tool. The ground surface textures, tool performance and tool life were investigated A ground surface roughness Rz of 0.14 um was achieved Our results show that the spindle speed, feed rate and cross feed affected the surface texture. One tool could finish $5000mm^2$ of die steel surface without any deterioration of the ground surface roughness.

Study on Effect of the printing direction and layer thickness for micro-fluidic chip fabrication via SLA 3D printing (적층 방식 3차원 프린팅에 의한 미세유로 칩 제작 공정에서 프린팅 방향 및 적층 두께의 영향에 관한 연구)

  • Jin, Jae-Ho;Kwon, Da-in;Oh, Jae-Hwan;Kang, Do-Hyun;Kim, Kwanoh;Yoon, Jae-Sung;Yoo, Yeong-Eun
    • Design & Manufacturing
    • /
    • v.16 no.3
    • /
    • pp.58-65
    • /
    • 2022
  • Micro-fluidic chip has been fabricated by lithography process on silicon or glass wafer, casting using PDMS, injection molding of thermoplastics or 3D printing, etc. Among these processes, 3D printing can fabricate micro-fluidic chip directly from the design without master or template for fluidic channel fabricated previously. Due to this direct printing, 3D printing provides very fast and economical method for prototyping micro-fluidic chip comparing to conventional fabrication process such as lithography, PDMS casting or injection molding. Although 3D printing is now used more extensively due to this fast and cheap process done automatically by single printing machine, there are some issues on accuracy or surface characteristics, etc. The accuracy of the shape and size of the micro-channel is limited by the resolution of the printing and printing direction or layering direction in case of SLM type of 3D printing using UV curable resin. In this study, the printing direction and thickness of each printing layer are investigated to see the effect on the size, shape and surface of the micro-channel. A set of micro-channels with different size was designed and arrayed orthogonal. Micro-fluidic chips are 3D printed in different directions to the micro-channel, orthogonal, parallel, or skewed. The shape of the cross-section of the micro-channel and the surface of the micro-channel are photographed using optical microscopy. From a series of experiments, an optimal printing direction and process conditions are investigated for 3D printing of micro-fluidic chip.

Fabrication of Master for a Spiral Pattern in the Order of 50nm (50nm급 불연속 나선형 패턴의 마스터 제작)

  • Oh, Seung-Hun;Choi, Doo-Sun;Je, Tae-Jin;Jeong, Myung-Yung;Yoo, Yeong-Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.4
    • /
    • pp.134-139
    • /
    • 2008
  • A spirally arrayed nano-pattern is designed as a model pattern for the next generation optical storage media. The pattern consists off types of embossed rectangular dot, which are 50nm, 100nm, 150nm and 200nm in length and 50nm in width. The height of the dot is designed to be 50nm. The pitch of the spiral track of the pattern is 100nm. A ER(Electron resist) master for this pattern is fabricated by e-beam lithography process. The ER is first spin-coated to be 50nm thick on a Si wafer and then the model pattern is written on the coated ER layer by e-beam. After developing this pattern written wafer in the solution, a ER pattern master is fabricated. The most conventional e-beam machine can write patterns in orthogonal way, so we made our own pattern generator which can write the pattern in circular or spiral way. This program generates the patterns to be compatible with the e-beam machine from Raith(Raith 150). To fabricate 50nm pattern master precisely, a series of experiments were done including the design compensation for the pattern size, optimization of the dose, acceleration voltage, aperture size and developing. Through these experiments, we conclude that the higher accelerating voltages and smaller aperture size are better for mastering the nano pattern which is in order of 50nm. With the optimized e-beam lithography process, a spiral arrayed 50nm pattern master adopting PMMA resist was fabricated to have dimensional accuracy over 95% compared to the designed. Using this pattern master, a metal pattern stamp will be fabricated by Ni electro plating for injection molding of the patterned plastic substrate.

Standardization of machining process for progressive press die (순차이송형 프레스 금형의 가공표준화)

  • Lee, S.M.;Lee, S.J.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.114-125
    • /
    • 1993
  • In the present study the newly developed CAD/CAM system is applied to the process of the molding design, machining for mini-sized and precise processive die, and the production of press-stamped parts. When the design of a die was completed by means of CAD, wire cut NC data were generated with the aid of a design drawing in the CAD system and then inputed into the wire cut machine, and with the aid of a hole chart which had been made for this purpose, all the data were classified into the categories of CNC milling, jig boring, jig grinding, and machine center, and then developing a program of generating NC data, errors in process were reduced and programming time was shortened. The program was developed by using Autolisp language which was built-in the CAD, and realizing the intergation of designing a die, generating and processing NC data directly by a designer, designing time and machinery processing time were shorted. And the traditionally required working time for design. NC program required 6 days of work becomes 4 days of work by using the developed CAD/CAM system so that the efficiency shows 150% of the reduction working time. The prpgram of the design of the automation a progressive die mold was developed in the PC-Class Autocad system, therefore development expense could be reduced, and the integration of the CAD/CAM of the progressive die mold with the standard DB being built could be realized.

  • PDF

Injection Process Yield Improvement Methodology Based on eXplainable Artificial Intelligence (XAI) Algorithm (XAI(eXplainable Artificial Intelligence) 알고리즘 기반 사출 공정 수율 개선 방법론)

  • Ji-Soo Hong;Yong-Min Hong;Seung-Yong Oh;Tae-Ho Kang;Hyeon-Jeong Lee;Sung-Woo Kang
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.1
    • /
    • pp.55-65
    • /
    • 2023
  • Purpose: The purpose of this study is to propose an optimization process to improve product yield in the process using process data. Recently, research for low-cost and high-efficiency production in the manufacturing process using machine learning or deep learning has continued. Therefore, this study derives major variables that affect product defects in the manufacturing process using eXplainable Artificial Intelligence(XAI) method. After that, the optimal range of the variables is presented to propose a methodology for improving product yield. Methods: This study is conducted using the injection molding machine AI dataset released on the Korea AI Manufacturing Platform(KAMP) organized by KAIST. Using the XAI-based SHAP method, major variables affecting product defects are extracted from each process data. XGBoost and LightGBM were used as learning algorithms, 5-6 variables are extracted as the main process variables for the injection process. Subsequently, the optimal control range of each process variable is presented using the ICE method. Finally, the product yield improvement methodology of this study is proposed through a validation process using Test Data. Results: The results of this study are as follows. In the injection process data, it was confirmed that XGBoost had an improvement defect rate of 0.21% and LightGBM had an improvement defect rate of 0.29%, which were improved by 0.79%p and 0.71%p, respectively, compared to the existing defect rate of 1.00%. Conclusion: This study is a case study. A research methodology was proposed in the injection process, and it was confirmed that the product yield was improved through verification.

Design of Conveyor Structure for Integrated Post-Process in Multi-Injection Molding Machine Environments (다중 사출설비 환경에서 후가공 공정의 통합운영을 위한 컨베이어 구조 설계에 관한 연구)

  • Kim, Ki Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.22-27
    • /
    • 2020
  • In this paper, we study the methodology to improve productivity and transportation efficiency simultaneously in the manufacturing environment of injection plants which has multiple injection machines arranged in parallel. In general, the post-processes such as finishing are continuously arranged in the injection machine located in the lower level of the injection plants, and one or two workers in charge of post-processing are always arranged. Therefore injection plants have low productivity due to post-processing and the front of the injection machine is very crowded due to various logistics flows. In this paper, we propose the designing methodology of conveyor structure for integrating the post-processes arranged at each injection machine and transporting the injection products to the integrated post-process automatically. Specifically, we propose the models for computing the number of conveyor units into the integrated processes, and for finding the optimal combinations to connect each machines and the conveyors. The proposed model is for the total productivity improvement, which are productivity and transportation efficiency. By applying the proposed model to companies that produce injection parts used for the home appliances, we verify the applicability and the effect of improving productivity and transportation efficiency, which more than 40%.

Cut-off Grinding Characteristics of the Carbon Fiber Epoxy Composite Materials (탄소 섬유 에폭시 복합재료의 절단 연삭 특성)

  • Kim, Po-Jin;Choe, Jin-Gyeong;Lee, Dae-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.338-346
    • /
    • 2000
  • Although the net-shape molding of composites is generally recommended, molded composites are frequently required cutting or grinding due to the dimensional inaccuracy for precision machine elements . During the composite machining operations such as cutting and grinding, the temperature at the cutting point may increase beyond the allowed limit due to the low thermal conductivity of composites, which might degrade the matrix of composite. Therefore, in this work, the temperature at the cutting point during cut-off grinding of carbon fiber epoxy composites was measured. The cutting force and surface roughness were also measured to investigate the cut-off grinding characteristics of the composites. The experiments were performed both under dry and wet grinding conditions with respect to cutting speed and feed rate. From the experimental investigation, the optimal conditions for the composite cut-off grinding were suggested.

Design and Performance Test of the Shoe Holder Spring of the Axial Piston Pump (액셜 피스톤 펌프의 슈 홀드 스프링 설계 및 성능시험)

  • Chun, Young-Jun;Choi, Jin-Ho;Chung, Hee-Taeg;Lee, Sang-Chan;Kim, Tae-Il;Kim, Dong-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2228-2236
    • /
    • 2002
  • The axial piston pump by which the mechanical energy is converted into hydraulic energy has been widely used in a press, a injection molding machine and construction equipments due to the high specific power compared to the electric power system. In this paper, the one-piece shoe holder spring of the axial piston pump to simplify its structure and reduce this manufacturing cost was designed and tested. The finite element analyses using the 3-D shell element and contact element were performed to determine the thickness, width and initial angle of the shoe holder spring. Also, the compressive tests of the shoe holder spring were performed and their results were compared with those of the finite element analysis. Also, the performance and endurance limit of axial piston pump with the shoe holder spring were tested and evaluated.

Development of Array-Lens for Multi-Color Chip-LED (Multi-Color Chip-LED용 어레이 렌즈 개발에 관한 연구)

  • Choi, Byung-Ky;Lee, Dong-Gil;Jang, Kyeung-Cheun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.50-55
    • /
    • 2007
  • The purpose of this research is to enhance the luminance of the LED and to improve the implementation of color by mounting an array lens on the LED without special technology in process. The workmanship of key components considering the economical efficiency and the injection molding technology for high quality of the product are essential to achieve it. In this paper, the mold was computer-aided was designed and manufactured by CAM software (NX4) and high speed machining center. the applied final machining conditions were 3,000-5,000mm/min feed speed, 15,000-25,000rpm and ${\Phi}0.3mm$ ball end-mill. And the Flow analysis was performed using the mold flow software(MPI) in order to get uniformity of resin. Injection conditions acquired by the flow analysis and the injection experiment are as follows. The cylinder temperature is $220-260^{\circ}C$, the mold temperature is $70-80^{\circ}C$, the injection time is about 1.2sec, the injection pressure and velocity is each 7.8-14.7Mpa, and the injection velocity is 0.8-1.2m/sec.

Development of Cam Die for Processing Four Lateral Switch Box (스위치 박스 4측면 가공용 캠금형 개발)

  • 김세환
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.121-125
    • /
    • 2003
  • A switch box is metal box for electric wire pipes in building. In manufacturing this box, the first press is used to mold and the second to fifth presses are used to process four-sides of a box. So four presses, four molds and four workers are needed. This leads to raise the manufacturing cost including machine lease rent, molding fee, and wages. To make matters worse, the roaring sound, vibration, and dangers of safety accidents make employees avoid from working that job. To solve this problem, a new Handling Mechanism and a cam die which combined four-die-involving processes into one die process were developed. That results job automation of the Job with one press and one die. The job avoidance problem is solved and manufacturing cost is reduced as well.

  • PDF