• 제목/요약/키워드: Molding Machines

검색결과 36건 처리시간 0.024초

Multi-Nozzle Injection Molding Automatic Machine 개발에 관한 연구 (A Study on the Development of an Automatic Multi-Nozzle Injection Molding Machine)

  • 이종형;김정환;이창헌;김윤곤;임춘규;이춘곤;권영신
    • 한국산업융합학회 논문집
    • /
    • 제10권2호
    • /
    • pp.123-128
    • /
    • 2007
  • The demand for the precision rubber products has been rapidly increasing with the recent growth of industries. And the requirement for the productivity and the quality calls out for the injection molding machines with the precision machining ability as well as the high productivity. Especially modern automobile industry is in urgent need of developing injection molding machines for the high quality rubber products with high productivity. And the inability of the domestic companies to meet the standards causes importing foreign machines and as a result spending good amount of dollars. It is extremely important to develop competitive machines and strengthen the infrastructure of the related industries. In this paper the functions and the structure of a automatic multi-nozzle injection molding machine has been studied to set up a proper test system for the precision rate and the reliability of the machines, which can help build the machines to meet the request of the industry.

  • PDF

회전성형 제품의 성능 개선 (Improvement of Rotational Molding Products)

  • 이형민;김현주;이정기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1834-1839
    • /
    • 2003
  • Temperature and velocity distributions of hot air flows in rotational molding machines with two different shapes and structures of oven and inlet were investigated by using FLUENT, a commercial computational fluid dynamics code. The shape and structure of oven and inlet in current rotational molding machine were improved. Two different sizes of mold inside each oven were considered in the analysis. Temperature and velocity distributions of hot air flows in two different rotational molding machines were compared to each other. In order to reduce cycle time and improve product quality in current rotational molding machine, the improved shape and structure of oven and inlet were proposed.

  • PDF

사출 성형기 제어/감시용 Embedded Controller 기술 (Embedded Controller Technology of Injection Molding Machine for Control and Monitoring)

  • 김한규;손일호;송준엽;하태호
    • 한국정밀공학회지
    • /
    • 제31권7호
    • /
    • pp.577-583
    • /
    • 2014
  • In this study, we introduce how to apply "Information and Communication Technology (ICT) to injection molding system. We report the current state of IT technology applied to produce their products in micro lens injection molding system. And we explain key technology of ICT for injection molding system and how to implement. Especially, we also mention about an embedded controller, also called as "M2M device". It provides programmable intelligent functions, communication, various interfaces, amplifier functions and mobile device connection to our application.

사출금형기계용 앵귤러핀의 충격시험에 따른 파손분석과 와이블 통계 해석 (Failure Analysis and Weibull Statistical Analysis according to Impact Test of the Angular Pin for Injection Molding Machines)

  • 김철수;남기우;안석환
    • 동력기계공학회지
    • /
    • 제21권3호
    • /
    • pp.37-44
    • /
    • 2017
  • In this study, failure analysis of the angular pin for molding machines to aluminum component molding was carried out. SM45C steel was used for the angular pin, it was surface hardened by the induction surface hardening heat treatment. The cross section of damaged angular pin was observed, and micro Vickers hardness value from the fractured part was measured. Brittle fracture was occurred from the fracture surface of angular pin, therefore, impact toughness value was evaluated by V-notch Charpy impact test. It was confirmed that the impact absorption energy was high when was tempered at a high temperature for a long time, and the toughness was slightly increased. Also, 2-parameter Weibull statistical analysis was investigated in order to evaluate the reliability of the measured micro Vickers hardness values and absorbed energy. The micro Vickers hardness and absorbed energy well followed a two-parameter Weibull probability distribution, respectively. The reverse design against angular pin was proposed as possible by using test results.

사출성형기를 위한 토글 메카니즘의 기구학적 모델링 및 해석 (Kinematic Modeling and Analysis of a Toggle Mechanism for Injection Molding Machines)

  • 조승호;전윤선;김영신;박경하
    • 한국정밀공학회지
    • /
    • 제30권2호
    • /
    • pp.216-222
    • /
    • 2013
  • This paper deals with the issue of kinematic modeling and analysis of a toggle mechanism. Based on the mathematic model of a conventional five-point type toggle mechanism. New five-point type toggle mechanism has been analyzed by computer simulation method. A sensitivity ratio has been defined and analyzed to compare its performance with four-point type toggle mechanism. A cycloidal motion has been applied to the cross head as an input and the motion of the moving platen is considered as an output. The effect of link design parameter as well as the type of toggle has been investigated by computer simulation to be available for industrial applications of injection molding machines.

사출 성형 공정에서의 변수 최적화 방법론 (Methodology for Variable Optimization in Injection Molding Process)

  • 정영진;강태호;박정인;조중연;홍지수;강성우
    • 품질경영학회지
    • /
    • 제52권1호
    • /
    • pp.43-56
    • /
    • 2024
  • Purpose: The injection molding process, crucial for plastic shaping, encounters difficulties in sustaining product quality when replacing injection machines. Variations in machine types and outputs between different production lines or factories increase the risk of quality deterioration. In response, the study aims to develop a system that optimally adjusts conditions during the replacement of injection machines linked to molds. Methods: Utilizing a dataset of 12 injection process variables and 52 corresponding sensor variables, a predictive model is crafted using Decision Tree, Random Forest, and XGBoost. Model evaluation is conducted using an 80% training data and a 20% test data split. The dependent variable, classified into five characteristics based on temperature and pressure, guides the prediction model. Bayesian optimization, integrated into the selected model, determines optimal values for process variables during the replacement of injection machines. The iterative convergence of sensor prediction values to the optimum range is visually confirmed, aligning them with the target range. Experimental results validate the proposed approach. Results: Post-experiment analysis indicates the superiority of the XGBoost model across all five characteristics, achieving a combined high performance of 0.81 and a Mean Absolute Error (MAE) of 0.77. The study introduces a method for optimizing initial conditions in the injection process during machine replacement, utilizing Bayesian optimization. This streamlined approach reduces both time and costs, thereby enhancing process efficiency. Conclusion: This research contributes practical insights to the optimization literature, offering valuable guidance for industries seeking streamlined and cost-effective methods for machine replacement in injection molding.

LabVIEW 를 활용한 실시간 렌즈 사출성형 공정상태 진단 시스템 개발 (Development of Real-Time Condition Diagnosis System Using LabVIEW for Lens Injection Molding Process)

  • 나초록;남정수;송준엽;하태호;김홍석;이상원
    • 한국정밀공학회지
    • /
    • 제33권1호
    • /
    • pp.23-29
    • /
    • 2016
  • In this paper, a real-time condition diagnosis system for the lens injection molding process is developed through the use of LabVIEW. The built-in-sensor (BIS) mold, which has pressure and temperature sensors in their cavities, is used to capture real-time signals. The measured pressure and temperature signals are processed to obtain features such as maximum cavity pressure, holding pressure and maximum temperature by the feature extraction algorithm. Using those features, an injection molding condition diagnosis model is established based on a response surface methodology (RSM). In the real-time system using LabVIEW, the front panels of the data loading and setting, feature extraction and condition diagnosis are realized. The developed system is applied in a real industrial site, and a series of injection molding experiments are conducted. Experimental results show that the average real-time condition diagnosis rate is 96%, and applicability and validity of the developed real-time system are verified.

모바일 증강현실 기반 사출성형공정 관리시스템 (An Injection Molding Process Management System based on Mobile Augmented Reality)

  • 홍원표;송준엽
    • 한국정밀공학회지
    • /
    • 제31권7호
    • /
    • pp.591-596
    • /
    • 2014
  • Augmented reality is a novel human-machine interaction that overlays virtual computer-generated information on a real world environment. It has found good potential applications in many fields, such as training, surgery, entertainment, maintenance, assembly, product design and other manufacturing operations. In this study, a smartphone-based augmented reality system was developed for the purpose of monitoring and managing injection molding production lines. Required management items were drawn from a management content analysis, and then the items were divided into two broad management categories: line management and equipment management. Effective work management was enabled by providing those working on the shop floor with management content information combined with the actual images of an injection molding production line through augmented reality.

사출성형품의 역공학예서 Geometry정보를 이용한 정밀도 향상에 관한 연구 (A Study on Improvement of Accuracy using Geometry Information in Reverse Engineering of Injection Molding Parts)

  • 김연술;이희관;황금종;공영식;양균의
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.546-550
    • /
    • 2002
  • This paper proposes an error compensation method that improves accuracy with geometry information of injection molding parts. Geometric information can give an improved accuracy in reverse engineering. Measuring data can not lead to get accurate geometric model, including errors of physical parts and measuring machines. Measuring data include errors which can be classified into two types. One is molding error in product, the other is measuring error. Measuring error includes optical error of laser scanner, deformation by probe forces of CMM and machine error. It is important to compensate these in reverse engineering. Least square method(LSM) provides the cloud data with a geometry compensation, improving accuracy of geometry. Also, the functional shape of a part and design concept can be reconstructed by error compensation using geometry information.

  • PDF