• Title/Summary/Keyword: Molding Core

Search Result 192, Processing Time 0.022 seconds

Optimization of Multi-component Injection Molding Process Based on Core-back System (코어백 방식을 이용한 동시사출 성형 공정 최적화 연구)

  • Choi, Dong-Jo;Park, Hong-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.67-74
    • /
    • 2009
  • Injection molding have been used for manufacturing various fields of automotive interior trims for years. The demands on the injection molding technique are grown with the further development of the automobile technique and the design presentations for cost reduction and environment-friendly. This paper shows that multi-component injection conditions are different from general injection, also shows how to optimize part design and mold design and how to manufacturing through the efficient use of multi-component injection in development process using core back system. To fulfill this purpose, all influential process parameters related to the quality of automobile parts were analyzed in terms of the correlation between them. Base on that, a innovative process will be developed by injection engineers to implement it in practice.

Improvement of surface quality of Tungsten-carbide core for glass micro molding (미세 유리 광부품 성형용 초경합금 코어의 표면거칠기 향상에 관한 연구)

  • Lee J.;Kim W.;Min B.;Kang S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.36-39
    • /
    • 2004
  • Glass molding is an advantageous method to manufacture glass micro optical components. However, it is difficult to make Tungsten Carbide core for glass microlens array. We have developed novel method to fabricate Tungsten Carbide core for micro glass components using pressure forming. Silicon masters were fabricated by micro machining. Tungsten Carbide core was fabricated by pressure forming and sintering. And we made high quality surface of Tungsten Carbide core by using the magnetic-field-assisted polishing process.

  • PDF

Microstructure analysis of DLC thin film fabricated by filtered arc ion plating method

  • Park, Y.P.;Kim, T.G.;Cheon, M.W.
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.363-367
    • /
    • 2012
  • DLC (diamond liked carbon) coating of the tungsten carbide (WC) alloy core surface for molding a glass aspheric lens improves the quality of glass lens and the molding core and is characterized by high hardness, high elasticity, abrasion resistance and chemical stability. In this study, the effect of DLC coating of a thin film by means of the filtered AIP (arc ion plating) technique was examined on Ra and shape of the coated surface. Roughness before and after DLC coating was measured and the result showed that the roughness was improved after coating as compared to before coating. It was observed that DLC coating of the WC alloy core surface for molding had an effect on improving the roughness and shape of the core surface. It is considered that this will have an effect on improving abrasion resistance and the service life of the core surface.

The Magnetic Properties of Amorphous Molding Cores using for Ballast (안정기용 비정질 함침코어의 자기적 특성)

  • Kim, B.G.;Jeong, S.J.;Kim, K.U.;Song, J.S.;Song, Y.S.;Kim, B.G.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1666-1669
    • /
    • 1996
  • To produce low loss amorphous molding cores which are used as choke cores in high efficiency electronic ballast for Metal Halide Lamp, the magnetic properties of amorphous molding cores were investigated with the various fabrication methods. The results are as follows : (1) The total weight of molding core gradually increased as molding time increases. (2) The magnetic properties($B_{10}$, $B_r$, $B_t/B_s$, $H_c$, $W_c$) of molding core drastically deteriorated. This is presumably due to the compressive stress imposed on amorphous core occurred during epoxy curing treatment. (3) Two step annealing process(curing+field annealing) was more or less effective to recover the damaged properties.

  • PDF

Analysis of Mechanical Characteristics of Polymer Sandwich Panels Containing Injection Molded and 3D Printed Pyramidal Kagome Cores

  • Yang, K.M.;Park, J.H.;Choi, T.G.;Hwang, J.S.;Yang, D.Y.;Lyu, M.-Y.
    • Elastomers and Composites
    • /
    • v.51 no.4
    • /
    • pp.275-279
    • /
    • 2016
  • Additive manufacturing or 3D printing is a new manufacturing process and its application is getting growth. However, the product qualities such as mechanical strength, dimensional accuracy, and surface quality are low compared with conventional manufacturing process such as molding and machining. In this study not only mechanical characteristics of polymer sandwich panel having three dimensional core layer but also mechanical characteristics of core layer itself were analyzed. The shape of three dimensional core layer was pyramidal kagome structure. This core layer was fabricated by two different methods, injection molding with PP resin and material jetting type 3D printing with acrylic photo curable resin. The material for face sheets in the polymer sandwich panel was PP. Maximum load, stiffness, and elongation at break were examined for core layers fabricated by two different methods and also assembled polymer sandwich panels. 3D printed core showed brittle behavior, but the brittleness decreased in polymer sandwich panel containing 3D printed core. The availability of 3D printed article for the three dimensional core layer of polymer sandwich panel was verified.

Relation of weld-quality and core shape in injection molding (사출성형 시 코어 형상과 웰드품질과의 관계)

  • Lee, Gyu-Ho;Choi, Woo-Su;Noh, Keon-Cheol;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.23-26
    • /
    • 2014
  • The injection molding is used in more than 70% of total production of plastic products. Weld line in injection molded part is one of the defects in injection molding process. Weld line deteriorates not only appearance quality but also mechanical property. In this study weld quality has been examined according to the injection processing temperature, materials and mold designs. We selected four different materials such as PA, PP, ABS and PS as experimental materials. Weld quality increased as injection processing temperature increases. It was more dependent on materials flow ability. As a result, weld quality incase of rectangular core is better than circular core.

  • PDF

Molding of glass micro optical components (유리 마이크로 광부품 어레이의 성형)

  • 최우재;강신일
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.76-79
    • /
    • 2003
  • Glass molding is an advantageous method to manufacture glass micro optical components. However, it is difficult to make tungsten carbide core for glass molded micro optics way. We have developed novel method to fabricate tungsten carbide core for glass molding of glass micro optical components. Silicon masters were fabricated by micro machining. Tungsten Carbide cores were fabricated by forming, sintering and coating. Finally we fabricated glass molded V-groove with pitch of 192$\mu\textrm{m}$ and glass microlens way with lens diameter of 36∼225$\mu\textrm{m}$ by the present method.

  • PDF

Effects of the mold surface heating methods for the DVD stamper with nano pattern on the transcription of the injection molded parts using COC and PMMA plastics (나노패턴을 갖는 DVD용 스템퍼의 표면가열방식이 COC, PMMA 수지를 이용한 사출성형품의 전사성에 미치는 영향)

  • 김동학;유홍진;김태완
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.3
    • /
    • pp.218-222
    • /
    • 2004
  • We developed the stamper structured mold with moving core type with nano pattern. Among the factors affecting the quality of injection molding plastic parts, We studied the effects of moving core surface heating method on the transcription of injection molding plastic parts with nano structures. Moving core surface heating has been tested by three different methods. The first was conventional injection molding process without heating moving core surface, the second was halogen lamp radiation heating process and the last was MmSH process using gas flame. As a result of making injection molded parts by using thermoplastic amorphous resins such as COC, PMMA, MmSH method which is the most high temperature of moving core surface showed the best nano pattern transcription of the three methods, but the outcome of conventional injection molding process was not better than others.

  • PDF

A study on light weighted injection molding technology and warpage reduction for lightweight automotive head lamp parts (자동차 헤드램프 부품의 경량화 사출 성형기술 및 변형 저감에 관한 연구)

  • Jeong, Eui-Chul;Son, Jung-Eon;Min, Sung-Ki;Kim, Jong-Heon;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.1-5
    • /
    • 2019
  • In this study, micro cellular injection molding of automobile head lamp housing with uneven thickness structure was performed to obtain improvement on deformation and light-weight of the part. The thickness of the presented model was uniformly modified to control the deformation of the molded part. In order to maximize the lightweight ratio, the model having an average thickness of 2.0 mm were thinly molded to an average thickness of 1.6 mm. GFM(Gas Free Molding) and CBM(Core Back Molding) technology were applied to improve the problems of the conventional foam molding method. Equal Heat & Cool system was also applied by 3D cooling core and individual flow control system. Warpage of the molded parts with even cooling was minimized. To improve the mechanical properties of foamed products, complex resin containing nano-filler was used and variation of mechanical properties was evaluated. It was shown that the weight reduction ratio of products with light-weighted injection molding was 8.9 % and the deformation of the products was improved from the maximum of 3.6 mm to 2.0 mm by applying Equal Heat & Cool mold cooling system. Also the mechanical strength reduction of foamed product was less than 12% at maximum.

Characteristics of Re-Jr Coating Thin Film on Tungsten Carbide Core Surface (Tungsten Carbide 코어 표면에 코팅 된 Re-Ir 박막 특성)

  • Lee, Ho-Shik;Park, Yong-Pil;Cheon, Min-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.139-139
    • /
    • 2010
  • Rhenium-Iridium(Re-Ir) thin films were deposited onto the tungsten carbide(WC) molding core by sputtering system. The Re-Ir thin films on tungsten carbide molding core were analyzed by scanning electron microscope(SEM) and surface roughness. The Re-Ir coating technique has been intensive efforts in the field of coating process because the coating technique and process have been their feature, like hardness, high elasticity, adrasion resistance and mechanical stability and also have been applied widely the industrial and biomedical areas. In this report, tungsten carbide(WC) molding core was manufactures using high performance precision machining and the efforts of Re-Ir coating on the surface roughness.

  • PDF