• 제목/요약/키워드: Mold steels

검색결과 30건 처리시간 0.032초

Cr-Mo계 금형강의 기계적 성질에 미치는 합금원소 및 템퍼링의 영향 (Effects of Alloying Element and Tempering on the Mechanical Properties of Cr-Mo Plastic Mold Steels)

  • 김남규;김병옥;이오연
    • 열처리공학회지
    • /
    • 제25권4호
    • /
    • pp.196-205
    • /
    • 2012
  • The purpose of this study is to enhance the hardenability and the mechanical properties by the addition of alloying elements such as Ni, Cr, Mo and B for the development of Cr-Mo plastic mold steel with uniform hardness and microstructure. The ingots were prepared by vacuum induction melting and forged to ${\Phi}35mm$ round bar. Forged bars were quenched and tempered at $200{\sim}600^{\circ}C$ for 1.5 hour. Jominy test, boron distribution observation, microstructual observation, tensile test and charpy impact test were conducted. It was confirmed that the hardenablity of these steels was improved by increasing of alloying elements and further promoted by the addition of boron. The critical rate of cooling required to obtain the bainitic structure for 0.27C-1.23Cr-0.28Mo-B steel was $0.5^{\circ}C/sec$. Hardness and strength of Cr-Mo steels decreased with increasing tempering temperature, but elongation and reduction of area increased with increasing tempering temperature. However, impact energy tempered at $400^{\circ}C$ showed the lowest value in the range $200{\sim}600^{\circ}C$ due to the temper embrittlement.

Cr-Mo계 금형강의 기계적 성질과 MnS 형상 변화에 미치는 Zr첨가의 영향 (Effect of Zr Addition on the Mechanical Properties and MnS Morphology of Cr-Mo Plastic Mold Steel)

  • 김남규;전호성;이오연
    • 열처리공학회지
    • /
    • 제23권4호
    • /
    • pp.191-197
    • /
    • 2010
  • Zr addition is known as effective method to improve the anisotropy of steel due to the elongated MnS inclusions which are observed in hot forged steels. The aim of this research is to investigate the effect of Zr addition on the mechanical properties and manganese sulphide morphology of 0.27%C-Cr-Mo plastic mold steel. The ingots were prepared by vacuum induction melting and forged to ${\Phi}35mm$ round bar. Forged bars were quenched and tempered at $560{\sim}640^{\circ}C$ for 1 hour. Jominy test, microstructual observation, tensile test and Charpy impact test were conducted. The morphology of MnS inclusions was changed by Zr addition. The shape of MnS inclusions was not so much lengthened and controlled not to be elongated by Zr inclusions which surround the MnS inclusions. Tensile strength and yield strength of the tempered steels were not nearly affected by the addition of Zr, but elongation and reduction of area were decreased. Especially, the toughness of Zr added steels was deteriorated with increasing of Zr content. From the results of this study, it is assumed that anisotropy of steels was improved by the addition of Zr. However, impact toughness of the steel was significantly decreased by the excessive Zr addition (over 0.066%).

중성자 흡수소재용 냉간 압연된 Gd-저합금 이상 스테인레스 강의 부식 및 마모성 (Corrosion and Wear Properties of Cold Rolled 0.087% Gd-Lean Duplex Strainless Steels for Neutron Absorbing Material)

  • 백열;최용
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 춘계학술대회 논문집
    • /
    • pp.123-123
    • /
    • 2015
  • 0.087 wt.% Gd-lean duplex stainless steels were inert arc-melted and cast in a mold. The micro-hardnesses of the rolling, transverse, short transverse directions were 258.5, 292.3, 314.7 HV, respectively. The 33% cold rolled specimen had the crystallographic texture that mainly (100) pole was concentrated to normal direction and (110) pole was concentrated in the center of normal and rolling directions. The corrosion potential and corrosion rate in artificial sea water were in the range of $105.6-221.6mV_{SHE}$, $0.59-1.06mA/cm^2$, respectively. The friction coefficient and wear loss of the 0.087 wt.% Gd-lean duplex stainless steels in artificial sea water were about 67% and 65% lower than in air, whereas, the wear efficiency was 22% higher. The corrosion and wear behaviors of the 0.087 wt.% Gd-lean duplex stainless steels significantly depended on the gadolinium phases.

  • PDF

연속주조용 탄소강에서 상변화에 따른 열팽창 및 수축 거동 (Thermal Expansion and Contraction Characteristics of Continuous Casting Carbon Steels)

  • 김현철;이재현;권오덕;임창희
    • 한국재료학회지
    • /
    • 제13권3호
    • /
    • pp.137-143
    • /
    • 2003
  • The air gap between the metal and mold, formed by shrinkage during solidification, causes surface and subsurface cracks in the continuous casting process. Molten crack on the surface might also occur due to improper heat transfer between them. In order to compensate the air gap in mold design, the thermal contraction is an essential factor. In this study, the thermal contraction and expansion behaviors were examined from the ($\alpha$ and pearlite)/${\gamma}$ to ${\gamma}$/$\delta$ transformations in continuous casting steels by the commercial dilatometer and the self- assembled dilatometer with laser distance measurement. It was found that the thermal contraction and expansion behaviors were very dependant on the phase transformation of the ${\gamma}$/$\delta$ as well as ($\alpha$ and pearlite)/${\gamma}$. The sudden volume change from $\delta$ to ${\gamma}$ which might cause cracks in the continuous casting process, was observed on cooling just below the melting temperature by the self-assembled dilatometer.

AlTiN코팅공구를 사용한 플라스틱금형강의 기계가공성 평가 (Machinability Evaluation of the Plastic Mould Steel using AlTiN Coated Tool)

  • 이승철;조규재
    • 한국생산제조학회지
    • /
    • 제18권6호
    • /
    • pp.629-635
    • /
    • 2009
  • In this research, KP-4, one of the plastic mold steels, was coated with the AlTiN from one layer to four layers by the PVD method in the $\Phi$ 8mm cemented carbide ball end mill. Coated KP-4 was processed with various conditions. For example, slope of $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$ the spindle rotation speed was changed from 10,000rpm to 16,000rpm, the tool feeding speed was changed from 1,300mm/min to 1,700mm/min, the depth of cut was also changed from 0.3mm to 0.9mm, and etc. Cutting component force according to the coating layer number, and surface roughness were studied. The cutting component force showed a good agreement better the up ward direction than the down ward direction under all experimental conditions. In case of the condition per the material shape, it was lessen when the tool have larger angle because the average effective diameter of the tool is larger. The surface roughness showed good condition in case of the up ward than the down ward direction. And, in the 3rd layer of AlTiN coating, it showed the most suitable condition.

  • PDF

고경도 금형강 단속 밀링절삭에 대한 CBN 공구의 가공 성능 (Machinability of CBN Tools in Interrupted Milling Process of Die & Mold Steels with High Hardness)

  • 송준희;문상돈
    • 대한금속재료학회지
    • /
    • 제48권7호
    • /
    • pp.651-659
    • /
    • 2010
  • When high-speed interrupted cutting is carried out for die and mold steels with high hardness, CBN tools manifested a significantly longer wear life than carbide, ceramic, or cermet tools in an experiment of face milling characteristics. In addition, it was also found that they secured a stable surface roughness within a range of 1.6 S~6.3 S, an acceptable range for precision machining for polished machining parts. And it makes them acceptable in the precision machining field, except in industries where very high machining accuracy is required. In the high hardness interrupted cutting, it was advantageous to perform a negaland treatment and a honning treatment on the tools' cutting edge to extend tool life and surface roughness. Also, severe crater development was found on the sloped face in CBN tools following high-speed machining. This caused the cutting edge to be weakened and damaged, and ultimately resulted in a shorter tool life. Finally, as a result of EDX mapping inspection, Cr component was detected evenly on the entire crater wear area, which can be included only in STD 11.

분말고속도공구강과 고속도공구강의 펀치 수명 비교 (Comparison of punch life of powder high speed tool steel and high speed tool steel)

  • 이우람;이춘규
    • Design & Manufacturing
    • /
    • 제16권1호
    • /
    • pp.9-14
    • /
    • 2022
  • A lot of research is being done on metal materials to improve the lifespan of molded parts. As a result, excellent mold materials have been developed that withstand high hardness at high temperatures and frictional heat generated from high-speed cutting. In this study, the press mold life of powder high-speed tool steel and general high-speed tool steel was compared. Powdered high-speed steel is composed of alloying elements such as tungsten, maldividene, cobalt, chromium, and vanadium in steel, which improves wear resistance compared to high-hardness and high-speed tool steels. The mold parts of both steel types were manufactured in the same way from heat treatment to machining, and the powder high-speed tool steel was 66HRC and the high-speed tool steel was 61HRC. As a result of the experiment, it was observed that the number of punching of powder high-speed tool steel was improved by 40-50%, and powder high-speed tool steel had fewer impurities, uniform texture, and excellent surface structure. It has a microscopic structure.

열간 금형강의 기계적 성질에 미치는 진공열처리와 염욕열처리 조건의 영향 (Effect of Vacuum Heat Treatment and Salt Bath Heat Treatment Conditions on Mechanical Properties of Hot Work Die Steel)

  • 김제돈;김경식;박기호
    • Design & Manufacturing
    • /
    • 제8권2호
    • /
    • pp.23-29
    • /
    • 2014
  • Salt bath heat treatment is usually used but recently vacuum heat treatment is increased for the heat treatment of hot work die steels. The differences in two heat treatment processes were compared by testing the mechanical properties of heat treated products. With two different features of processes, mechanical properties such as hardness, tensile strength and impact strength of products show very different results. In this study salt bath heat treated products showed higher tensile strength and impact strength than vacuum heat treated products but hardness was not much different. These lower mechanical properties of vacuum heat treated products are due to differences in heating and quenching process.

  • PDF