DOI QR코드

DOI QR Code

Effects of Alloying Element and Tempering on the Mechanical Properties of Cr-Mo Plastic Mold Steels

Cr-Mo계 금형강의 기계적 성질에 미치는 합금원소 및 템퍼링의 영향

  • 김남규 ((주)세아베스틸 기술연구소) ;
  • 김병옥 ((주)세아베스틸 기술연구소) ;
  • 이오연 (전북대학교 신소재공학부 신소재개발연구센터)
  • Received : 2012.05.16
  • Accepted : 2012.07.21
  • Published : 2012.07.31

Abstract

The purpose of this study is to enhance the hardenability and the mechanical properties by the addition of alloying elements such as Ni, Cr, Mo and B for the development of Cr-Mo plastic mold steel with uniform hardness and microstructure. The ingots were prepared by vacuum induction melting and forged to ${\Phi}35mm$ round bar. Forged bars were quenched and tempered at $200{\sim}600^{\circ}C$ for 1.5 hour. Jominy test, boron distribution observation, microstructual observation, tensile test and charpy impact test were conducted. It was confirmed that the hardenablity of these steels was improved by increasing of alloying elements and further promoted by the addition of boron. The critical rate of cooling required to obtain the bainitic structure for 0.27C-1.23Cr-0.28Mo-B steel was $0.5^{\circ}C/sec$. Hardness and strength of Cr-Mo steels decreased with increasing tempering temperature, but elongation and reduction of area increased with increasing tempering temperature. However, impact energy tempered at $400^{\circ}C$ showed the lowest value in the range $200{\sim}600^{\circ}C$ due to the temper embrittlement.

Keywords

References

  1. H. Erhart and H. J. Grake : Met. Sci, 15 (1981) 401. https://doi.org/10.1179/030634581790426877
  2. W. C. Leslie : The Physical Metallurgy of Steels, MC Graw-Hill Press (1981) 203.
  3. R. Habu, M.Miyata, S. Sekino and S. Goda : ISIJ, 60 (1974) 48.
  4. K. Yamanaka and Y. Ohmori : ISIJ, 62 (1976) 109.
  5. D. McLean, Grain Boundaries in Metals, Clarendon Press, Oxford (1957).
  6. D. V. Doane and J. S. Kirkaloly : Hardenability Concepts with Application to Steel, AIME, Warrendale, PA (1978).
  7. S. Watanobe, H. Otani and T.Kunitake : ISIJ, 62 (1976) 66.
  8. X. L. He, Y. Y. Chu and J. J. Jonas : Acta Metall., 37 (1989) 147. https://doi.org/10.1016/0001-6160(89)90274-5
  9. X. L. He, Y. Y. Chu and J. J. Jonas : Acta Metall., 37 (1989) 2905. https://doi.org/10.1016/0001-6160(89)90325-8
  10. M. Jahazi and J. J. Tonas : Mater, Sci., Eng, 335 (2002) 49. https://doi.org/10.1016/S0921-5093(01)01905-0
  11. Irvine and Pickering : JISI, 187 (1957) 292.
  12. M. Ueno and K. Itoh : ISIJ, 74 (1988) 166.
  13. H. Tamehiro, M. Murata, R. Habu and M. Nagumo : ISIJ, 72 (1986) 112.
  14. S. Watanabe and H. Otani : ISIJ, 62 (1976) 75.
  15. B. S. Lement, B. L. Aberbach and M. Cohen : Trans., ASM, 46 (1954) 851.
  16. C. J. Altstetter, M. Cohen and B. L. Aberbach : Trans., ASM, 55 (1962) 287.
  17. G. Thomas : Met. Trans., 9 (1978) 439. https://doi.org/10.1007/BF02646396
  18. J. P. Materkowski and G. Krauss : Met. Trans., 10 (1979) 1643. https://doi.org/10.1007/BF02811697
  19. R. M. Horn and R. O. Ritchi : Met. Trans., 9 (1978) 1039. https://doi.org/10.1007/BF02652208
  20. C. L. Braiant and S. K. Banerji : Met. Trans., 10 (1979) 123.
  21. C. L. Braiant and S. K. Banerji : Met. Trans., 10 (1979) 1729. https://doi.org/10.1007/BF02811708
  22. C. L. Braiant and S. K. Banerji : Met. Trans., 10 (1979) 1151. https://doi.org/10.1007/BF02811660