• Title/Summary/Keyword: Mold life

Search Result 376, Processing Time 0.026 seconds

Antimicrobial Activity of Green Tea against Putrefactive Microorganism in Steamed Bread (빵 부패미생물에 대한 녹차의 항균작용)

  • 김창순;정순경;오유경;김래영
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.3
    • /
    • pp.413-417
    • /
    • 2003
  • To evaluate the antimicrobial activity of green tea against putrefactive microorganism in steamed bread, antibacterial activity of green tea extract against well-known strains of spoilage bacteria (Bacillus subtilis ATCC 6633, Bacillus pulmilus KCTC 3348 and Bacillus cereus IFO 12113) and mold (Aspergillus niger KCCM l1239) in bread was determined using the paper disk method. The green tea extract (GTE) showed the inhibition effects on the growth of all the strains of bacteria and mold at 1, 2, 3% levels. The activity of GTE was stable in the wide range of pH (4~9) and temperature (50~20$0^{\circ}C$). When green tea powder (GTP: 1, 3, 5%) was added to steamed bread increase of total bacterial and mold counts declined during storage at 25"C as the levels of GTP increased. By addition of 5% GTP, mold appeared 1 day late extending shelf life of steamed bread compared to control bread without GTP. Therefore, the levels of GTP added to steamed bread could be more than 5% for extended shelf life and wholesomeness of steamed bread.read.

Finite Element Analysis on the Shaft Fitting to Inner Raceway of Radial Ball Bearing (레이디얼 볼베어링의 내륜 끼워맞춤에 관한 유한요소해석)

  • Ko, Byung-Du;Lee, Ha-Sung
    • Design & Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.45-51
    • /
    • 2012
  • The main goal of this paper is to establish an interference tolerance for determining optimal amount of clearance in the shaft-bearing system supported by radial ball bearings. The 2-D frictional contact model was employed for the FE analysis between the shaft and the inner raceway. Several examples were simulated using different material properties for the solid shaft. Efforts were focused on the deformation applied in the radial direction to select suitable bearings. The analysis results showed that the initial axial preload applied on the bearings plays a significant role to reduce bearing fatigue life. The proposed design parameters obtained by numerical simulations can approximately predict a rate of bearing life reduction as a function of shaft diameter ratio. This analysis can also be used to calculate the optimal initial radial clearance in order to obtain a shaft-bearing system design for high accuracy and long life.

  • PDF

Damage detection of 3D printed mold using the surface response to excitation method

  • Tashakori, Shervin;Farhangdoust, Saman;Baghalian, Amin;McDaniel, Dwayne;Tansel, Ibrahim N.;Mehrabi, Armin
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.369-376
    • /
    • 2020
  • The life of conventional steel plastic injection molds is long but manufacturing cost and time are prohibitive for using these molds for producing prototypes of products in limited numbers. Commonly used 3D printers and rapid prototyping methods are capable of directly converting the digital models of three-dimensional solid objects into solid physical parts. Depending on the 3D printer, the final product can be made from different material, such as polymer or metal. Rapid prototyping of parts with the polymeric material is typically cheaper, faster and convenient. However, the life of a polymer mold can be less than a hundred parts. Failure of a polymeric mold during the injection molding process can result in serious safety issues considering very large forces and temperatures are involved. In this study, the feasibility of the inspection of 3D printed molds with the surface response to excitation (SuRE) method was investigated. The SuRE method was originally developed for structural health monitoring and load monitoring in thin-walled plate-like structures. In this study, first, the SuRE method was used to evaluate if the variation of the strain could be monitored when loads were applied to the center of the 3D printed molds. After the successful results were obtained, the SuRE method was used to monitor the artifact (artificial damage) created at the 3D printed mold. The results showed that the SuRE method is a cost effective and robust approach for monitoring the condition of the 3D printed molds.

A Study of Semi Fine-blanking Mold Analysis using Finite Element Method (유한요소법을 이용한 세미 파인-블랭킹 금형 해석에 관한 연구)

  • Lee, Sang-Hun;Song, Gi-Hwan;Son, Chang-Woo;Seo, Hyoung-Jin;Seo, Tae-Il
    • Design & Manufacturing
    • /
    • v.10 no.1
    • /
    • pp.51-54
    • /
    • 2016
  • Metal sheet forming has been commonly used as the core technology in manufacturing parts of automobiles. It guarantees the highest production rate due to the process of mass production employing the press die. For precision of the product, the accuracy of the molds and its mechanic structures are considered as essential factors. One of these is fine blanking, which is utilized for the production of the metal sheet spring, with which clear sheer surfaces can be achieved in one operation from the materials. However, the current designs of press dies perform the forming analysis with the molds of rigid body, so they are focused on weight lightening by a rule of thumb. Therefore, this paper practice structural analysis about developing the semi fine-fine blanking technology. The semi fine-blanking can be run through the combination of the hydraulic cylinders and normal presses, so this paper analyze the amount of deformation according to the oil pressure. In addition, based on the plasticity of 50CrV4, the materials of the mold parts, the structural analysis and life analysis are proceeded, so they are expected to be useful as data for manufacturing the mold.

Entomopathogenic Fungi as Dual Control Agents against Both the Pest Myzus persicae and Phytopathogen Botrytis cinerea

  • Yun, Hwi-Geon;Kim, Dong-Jun;Gwak, Won-Seok;Shin, Tae-Young;Woo, Soo-Dong
    • Mycobiology
    • /
    • v.45 no.3
    • /
    • pp.192-198
    • /
    • 2017
  • The green peach aphid (Myzus persicae), a plant pest, and gray mold disease, caused by Botrytis cinerea, affect vegetables and fruit crops all over the world. To control this aphid and mold, farmers typically rely on the use of chemical insecticides or fungicides. However, intensive use of these chemicals over many years has led to the development of resistance. To overcome this problem, there is a need to develop alternative control methods to suppress populations of this plant pest and pathogen. Recently, potential roles have been demonstrated for entomopathogenic fungi in endophytism, phytopathogen antagonism, plant growth promotion, and rhizosphere colonization. Here, the antifungal activities of selected fungi with high virulence against green peach aphids were tested to explore their potential for the dual control of B. cinerea and M. persicae. Antifungal activities against B. cinerea were evaluated by dual culture assays using both aerial conidia and cultural filtrates of entomopathogenic fungi. Two fungal isolates, Beauveria bassiana SD15 and Metarhizium anisopliae SD3, were identified as having both virulence against aphids and antifungal activity. The virulence of these isolates against aphids was further tested using cultural filtrates, blastospores, and aerial conidia. The most virulence was observed in the simultaneous treatment with blastospores and cultural filtrate. These results suggest that the two fungal isolates selected in this study could be used effectively for the dual control of green peach aphids and gray mold for crop protection.

Fatigue Assessment Using SPR and Adhesive on Dissimilar Materials (SPR 과 접착제를 이용한 이종재료 접합의 피로평가)

  • Kim, Tae-Hyun;Suh, Jeong;Kang, Hee-Shin;Lee, Young-Shin;Park, Chun-Dal
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.10
    • /
    • pp.1204-1209
    • /
    • 2011
  • In this study, fatigue life is evaluated by comparing with lighter car body through the experiment on SPR joints. An experimental activity on sheet metal samples of Aluminum 5J32 and Steel SPRC440 has been conducted to achieve better understanding of the process. In addition, SPR joint used less than the existing Spot Welding improves joint strength and fatigue life is evaluated by using SPR and adhesive joining Hybrid. Joining(bonding) strength and fatigue life on SPR and Hybrid (SPR + adhesive) are evaluated throughout the experiment. With joining strength than 20 % of the aluminum material, dissimilar materials has improved over 2 times as large as the strength In case of dissimilar materials, the fatigue life of aluminum is increased by 1.6 to 2.5 times as large as the life.

Development of Control System with Fungicides against Diseases of Ginseng Plant (살균제 처리에 따른 인삼의 지상부 병해 방제효과)

  • Kim, Joo-Hyung;Lee, Seon-Wook;Min, Ji-Young;Bae, Young-Seok;Shin, Myeong-Uk;Kim, Sun-Bo;Kim, Myoung-Ki;Yeon, Cho-Rong;Lim, Jin-Young;Kim, Heung-Tae
    • Research in Plant Disease
    • /
    • v.13 no.3
    • /
    • pp.164-169
    • /
    • 2007
  • Three kinds of disease occurring on ginseng leaves, such as grey mold, Alternaria blight, and anthracnose, started at the beginning of June, July, and August, respectively. The disease incidence was rapidly increased from the beginning of rainy season. To develop the control system with fungicides, 6 fungicides were selected and applied on ginseng at the indicated time. Calculating the control value by using the area under the disease progressing curve (AUDPC), the control activities of the supervised control system with fungicides were 61.7, 78.8 and 70.5% against grey mold, Alternaria blight, and anthracnose, respectively. The application of the mixture of carbendazim and diethofencarb on first of June was very important in control system with fungicides. If it was deleted in control system, control value was decreased against grey mold. In the case of Alternaria blight and anthracnose, the application of difenoconazole on July 18, and trifloxystrobin on August 7 were indispensible. If difenoconazole and trifloxystrobin were not applied on July 18, and August 7, the control activities against Alternaria blight and anthracnose, respectively, were decreased to 28.9% and 44.4%.

Structure analysis of ultra precision nano-scale machine for mold processing (금형가공을 위한 초정밀 나노가공기의 구조해석)

  • Baek, Seung-Yub;Kim, Seon-Yong
    • Design & Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.51-56
    • /
    • 2007
  • As various manufacturing technology of optical glass is developed, the aspheric lenses are supplied to many fields. Electronic or measuring instruments equipped with aspheric lens have recently been used since aspheric lens is more effective than spheric one. However, it is still difficult manufacture glass lens because of high cost and the short life of core. The demands of the aspheric glass lenses increase since it is difficult to obtain the desirable performance in the plastic lens. For the mass production of aspheric lens, specific molds with precisely machined cores should be prepared. In order to obtain competitiveness in the field of industrial manufacturing, a reduction in the development period for the batch machining of products is required. It is essential to analyze the stress distribution and deformations of machining system which is used for manufacturing the aspheric lens using FEM software ANSYS. Finite element simulations have been performed in order to study the influence of machining system which is developed in this study on structures. It is very important to understand the structural behavior of machining system. This paper investigated the static analysis and dynamic analysis of machining system for aspheric lens to predict the damage due to loading.

  • PDF