• Title/Summary/Keyword: Mold injection

Search Result 1,020, Processing Time 0.023 seconds

A study on coupling effect during lifting (다수 캐비티 사출금형에서 충전 불균형 원인 분석 및 스크류 런너 디자인)

  • Kang, Min-A;Kim, Hae-Yeon;Lyu, Min-Young
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.155-158
    • /
    • 2008
  • Flow imbalance among the cavities was often observed in multi-cavity mold. The flow imbalance affects on the dimensions and physical properties of molded articles. First of all, the origin of flow imbalance is geometrical imbalance of delivery system. However, even the geometry of delivery system is balanced the cavity imbalance is being developed. This comes from the temperature distribution in the cross-section of runner, which is affected by the operational conditions. In this study, experimental study of flow imbalance has been conducted for various injection speeds. This study also suggests new runner design to eliminate flow imbalance in multi-cavity injection mold. Simulation and experimental results showed suggested new designed runner could eliminate or reduce flow imbalance in multi-cavity injection mold.

  • PDF

- A Web-Based Collaboration and Manufacturing Support System for Injection Mold Production - (사출제품 생산을 위한 웹기반 협업 및 제조정보 지원 시스템 개발)

  • Lee Doo Yong;Lee Hong Hee
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.4
    • /
    • pp.183-193
    • /
    • 2004
  • The injection mold industry has strong relationship with many other industries. In the injection mold industry, the harmonious collaboration of the order-making companies, the mold-making companies, and the molded-parts making companies, which are distantly located, is very important. In this study, a web-based collaboration system is developed for the purpose. It offers the criterion to select appropriate production companies. It also tries to minimize the production cost of the mold design by distributing and evaluating the design information. The developed system is constructed using various recent web-programming tools.

A Study on automatic optimization of cooling circuit design in injection mold (사출금형 냉각회로의 최적설계자동화에 관한 연구)

  • Chang, H.K.;Jung, H.W.;Lee, Y.J.;Rhee, B.O.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.262-265
    • /
    • 2007
  • Cooling circuit of injection mold affects part quality and cycle time of injection molding process. Examination on mold cooling circuit is usually omitted in part design stage because cooling circuit is designed in the mold design stage. It is desirable to examine mold cooling circuit with respect to part quality in the part design stage. In order to make the examination process convenient and fast, cooling circuit design should be automated without intervention of skilled designer. In this study, optimization of cooling circuit design is automated with commercial softwares; Visual DOC and Moldflow MPI. Effect of initial value for optimization is examined for the optimization result.

  • PDF

A Study on Optimal Solution of Short Shot Using Modular Fuzzy Logic Based Neural Network (MENN) (모듈형 퍼지-신경망을 이용한 미성형 사출제품의 최적 해결에 관한 연구)

  • 강성남;허용정;조현찬
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.6
    • /
    • pp.465-469
    • /
    • 2001
  • In injection molding short shot is one of the frequent and fatal defects. Experts of Injection molding usually adjust process conditions such as injection time, mold temperature, and melt temperature because it is most economic way in time and cost. However, it is difficult task to find appropriate process conditions for troubleshooting of short shot as injection molding process is a highly nonlinear system and process conditions are coupled. In this paper, a modular fuzzy neural network (MFNN) has been applied to injection molding process to shorten troubleshooting time of short shot. Based on melt temperature and fill time, a reasonable initial mo이 temperature is recommenced by the NFNN, and then the mold temperature is inputted to injection molding process. Depending on injection molding result, specifically the insufficient quantity of an injection molded part. and appropriate mold temperature is recommend repeatedly through the NFNN.

  • PDF

Injection Mold with Cavity Pressure/Temperature Sensors for Standard Tensile Test Specimen (내압력.온도센서를 갖는 표준 인장시편용 사출금형)

  • Lee, Do-Myoung;Han, Byoung-Kee;Lee, Sung-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.84-90
    • /
    • 2007
  • In this study, design and manufacturing of plastic injection mold with cavity pressure/temperature sensors were performed fur tensile test specimen. International standard system for plastic tensile specimen was applied to design an injection molding system. Cavity pressure and temperature sensors were placed on the side of fixed platen of the injection mold to prevent them from external impact damage. Injection molding experiments with variations of injection speed and melt temperature were performed and then tensile test of the manufactured polycarbonate specimens was also performed. It was shown that injection molding processing parameters can have effect on the mechanical properties of the plastic injection molded part.

A Study on Optimal Solution of Short Shot Using Fuzzy Logic Based Neural Network(FNN) (퍼지-신경망을 이용한 미성형 사출제품의 최적해결에 관한 연구)

  • Kang, Seong-Nam;Huh, Yong-Jeong;Cho, Hyun-Chan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.83-86
    • /
    • 2001
  • In injection molding, short shot is one of the frequent and fatal defects. Experts of injection molding usually adjust process conditions such as injection time, mold temperature, and melt temperature because it is the most economic way in time and cost. However it is a difficult task to find appropriate process conditions for troubleshooting of short shot as injection molding process is a highly nonlinear system and process conditions are coupled. In this paper, a fuzzy neural network(FNN) has been applied to injection molding process to shorten troubleshooting time of short shot. Based on melt temperature and fill time, a reasonable initial mold temperature is recommended by the FNN, and then the mold temperature is inputted to injection molding process. Depending on injection molding result, specifically the insufficient quantity of an injection molded part, an appropriate mold temperature is recommend repeatedly through the FNN.

  • PDF

Investigation the part shrinkage in injection molding for glass fiber reinforced thermoplastics (유리섬유가 첨가된 수지에서 사출성형품의 성형수축에 관한 연구)

  • Mo Jung-Hyuk;Lyu Min-Young
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.159-165
    • /
    • 2004
  • The shrinkages of injection molded parts are different in molding operational conditions and mold design. It also differs from resins. The shrinkages of injection molded parts for PBT (polybutylene terephthalate), PC (polycarbonate),and glass reinforced PBT and PC have been studied for various operational conditions of injection molding. The part shrinkage of crystalline polymer, PBT was higher than that of amorphous polymer, PC by about two times. The part shrinkages of both polymers decreased as glass fiber content increases. Higher Injection temperature and lower injection pressure resulted in a higher shrinkage in both PBT and PC resins. As mold temperature increases the part shrinkage of PC decreased. However, the part shrinkage of PBT increased as mold temperature increases. The part shrinkage of both PBT and PC resins decreased as gate size increases since the pressure delivery is mush easier for a larger gate size. The part shrinkage of flow direction was less than that of the perpendicular direction to the flow for both pure and glass fiber reinforced resins. The part shrinkage at the position close to the gate was less than that of the position far from the gate.

  • PDF

Investigation of the Part Shrinkage in Injection Molding for Class Fiber Reinforced Thermoplastics (유리섬유가 첨가된 수지에서 사출성형품의 성형수축에 관한 연구)

  • Mo J.-H.;Lyu M.-Y.
    • Transactions of Materials Processing
    • /
    • v.13 no.6 s.70
    • /
    • pp.515-521
    • /
    • 2004
  • The shrinkages of injection molded parts are different in molding operational conditions and mold design. It also differs from resins. The shrinkages of injection molded parts fur PBT (polybutylene terephthalate), PC (polycarbonate), and glass reinforced PBT and PC have been studied for various operational conditions of injection molding. The part shrinkage of crystalline polymer, PBT was higher than that of amorphous polymer, PC by about two times. The part shrinkages of both polymers decreased as glass fiber content increases. Higher injection temperature and lower injection pressure resulted in a higher shrinkage in both PBT and PC resins. As mold temperature increases the part shrinkage of PC decreased. However, the part shrinkage of PBT increased as mold temperature increases. The part shrinkages of PBT and PC resins decreased as gate size increases since the pressure delivery is mush easier for a larger gate size. The part shrinkage of flow direction was less than that of the perpendicular direction to the flow for both pure and glass fiber reinforced resins. The part shrinkage at the position close to the gate was less than that of the position far from the gate.

Development of Film Fixing System for Improving Overlap Defects in the Film Insert Injection Molding Process (필름 인서트 사출성형 공정의 오버랩 불량 개선을 위한 필름 고정 시스템 개발)

  • Kim, Jung-Ho;Mun, Ji-Hun;Park, Hong-Seok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.472-479
    • /
    • 2013
  • We carried out research into an environmentally friendly injection molding process that involves filling the mold with polymer after thin films are fixed into the cavity, without the coating, plating process. Film insert injection molding is a new technique in which molten plastic resin is injected into the cavity after films are precisely attached to the side of the mold wall. In the film insert injection molding process, the insert film is moved by the flow of the molten plastic resin. Overlap defects cause a decline in the productivity and the quality of the manufactured goods. To reduce overlap defects, new injection mold parts are proposed to produce automotive exterior parts using thin films. It is suggested that the best possible method would be to fix the thin films to one side of the mold wall, and develop interior pins to fix the films in the mold. Based on this new pin fixing system, the problem of the film being moved by the flow of the molten resin was improved.

Silicone Injection Mold & Molding Technology for Super-hydrophobic Curved Surface (초발수 곡면표면 실리콘 사출금형성형기술)

  • Lee, Sung-Hee;Kang, Jeong-Jin;Lee, Jong-Won;Hong, Seok-Kwan;Ko, Jong-Soo;Lee, Jae-Hoon;Noh, Ji-Whan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.13-18
    • /
    • 2012
  • In this study, silicone injection molding technology with curved thermoplastic insert was developed to produce super-hydrophobic surface. Thermoplastic insert part and injection mold design of base plastic cover were performed to produce cost effective hydrophobic surface part. An optimization process of part thickness for thermoplastic insert part was performed with transient thermal analysis under silicone over-molding process condition. Structural thermal analysis of silicone injection mold was also performed to obtain uniform temperature condition on the surface of micro-patterned mold core. Super-hydrophobic surface for the silicone injection molded part with thermoplastic insert could be verified from the measurement of contact angle. It was shown that the averaged contact angle was over $140^{\circ}$.