• Title/Summary/Keyword: Mold Support

Search Result 59, Processing Time 0.025 seconds

E-Machining of Engineering-to-Order Mold Park from e-Catalog (주문자 요구에 유연하게 대응하는 금형 부품의 전자 거래)

  • Mun, Du-Hwan;Jang, Kwang-Sub;Han, Soon-Hung;Kim, Jun-Hwan;Hwang, Ho-Jin
    • The Journal of Society for e-Business Studies
    • /
    • v.12 no.1
    • /
    • pp.1-24
    • /
    • 2007
  • In the mold parts industry, customers typically place orders for order-made parts with some changes to the design specifications of ready-made parts within the extent of the manufacturing capability of the supplier. Being customized for ready-made parts, existing e-Catalog systems cannot support the above trade pattern. To solve this problem, an ETO (engineering-to-order) method is proposed here, enabling the trade of order-made parts in an e-Catalog system by utilizing the design and manufacturing knowledge of the part suppliers. After addressing technological challenges and solutions, we briefly describe application of the ETO method to two types of mold parts - ejector pins and mold bases.

  • PDF

Development of a System for Selecting High-Quality Mold Manufacturing NC Data Using Evaluating the NC Data (NC 데이터 정량화를 통한 고품질 사출금형 NC 가공데이터 선정 방안)

  • Heo Eun-Young;Kim Bo-Hyun;Kim Dong-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.99-108
    • /
    • 2006
  • Since mold industries are regarded as belonging to three types of bad business, capable young people are reluctant to work in this field. The industries are hard to employ skilled workers who have much experience and knowledge On the mold manufacturing. Thus, effective CAM systems are required for unskilled workers to create process plans and NC data for the manufacturing, and process plans play important roles in the downstream manufacturing processes, such as NC machining, polishing, and final assembly. This study proposes a decision support system that facilitates unskilled workers to easily select high quality NC-data, as well as to increase productivity. The proposed system is assumed to follow a CAM operation scenario that consists of next three steps: 1) identifying several process plans and enumerating feasible unit machining operations (UMOs) from material and part surface information, 2) creating all feasible NC-data based on UMOs using a commercial CAM system, 3) selecting the best NC data among the feasible NC data using four screening criteria, such as machining accuracy, machining allowance, cutting load, and processing time. A case study on the machining of a camera core mold is provided to demonstrate the proposed system.

Prediction of Weight of Spiral Molding Using Injection Molding Analysis and Machine Learning (사출성형 CAE와 머신러닝을 이용한 스파이럴 성형품의 중량 예측)

  • Bum-Soo Kim;Seong-Yeol Han
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.27-32
    • /
    • 2023
  • In this paper, we intend to predict the mass of the spiral using CAE and machine learning. First, We generated 125 data for the experiment through a complete factor design of 3 factors and 5 levels. Next, the data were derived by performing a molding analysis through CAE, and the machine learning process was performed using a machine learning tool. To select the optimal model among the models learned using the learning data, accuracy was evaluated using RMSE. The evaluation results confirmed that the Support Vector Machine had a good predictive performance. To evaluate the predictive performance of the predictive model, We randomly generated 10 non-overlapping data within the existing injection molding condition level. We compared the CAE and support vector machine results by applying random data. As a result, good performance was confirmed with a MAPE value of 0.48%.

  • PDF

Automatic conversion of machining data by the recognition of press mold (프레스 금형의 특징형상 인식에 의한 가공데이터 자동변환)

  • 최홍태;반갑수;이석희
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1994.04a
    • /
    • pp.703-712
    • /
    • 1994
  • This paper presents an automatic conversion of machining data from the orthographic views of press mold by feature recognition rule. The system includes following 6 modules : separation of views, function support, dimension text recognition, feature recognition, dimension text check and feature processing modules. The characteristic of this system is that with minimum user intervention, it recognizes basic features such as holes, slots, pockets and clamping parts and thus automatically converts CAD drawing details of press mold into machining data using 2D CAD system instead of using an expensive 3D Modeler. The system is developed by using IBM-PC in the environment of AutoCAD R12, AutoLISP and MetaWare High C. Performance of the system is verified as a good interfacing of CAD and CAM when applied to a lot of sample drawings.

Automatic Conversion of Machining Data by the Feature Recognition of Press Mold (프레스 금형의 특징형상 인식에 의한 가공데이타 자동변환)

  • Choi, Hong-Tae;Bahn, Kab-Soo;Lee, Seok-Hee
    • IE interfaces
    • /
    • v.7 no.3
    • /
    • pp.181-191
    • /
    • 1994
  • This paper presents an automatic conversion of machining data from the orthographic views of press mold by feature recognition rule. The system includes following 6 modules : separation of views, function support, dimension text check and feature processing modules. The characteristic of this system is that with minimum user intervention, it recognizes basic features such as holes, slots, pockets and clamping parts and thus automatically converts CAD drawing details of press mold into machining data using 2D CAD system instead of using an expensive 3D Modeler. The system is developed by using IBM-PC in the environment of AutoCAD R12, AutoLISP and MetaWare High C. Performance of the system is verified as a good interfacing of CAD and CAM when applied to a lot of sample drawing.

  • PDF

미생물 고정화 담체의 물리적 특성

  • 박영식;구기우
    • Journal of Environmental Science International
    • /
    • v.7 no.3
    • /
    • pp.269-274
    • /
    • 1998
  • In order to develop of support medla for bloom reactor, physicochemical properties and attachability of surface of activated carbon, clay mineral, non-clay mineral, and waste mold sand were enamined. Measured physicochemical properties of materials were surface roughness, mean particle size, surface area, hydrophobicity, and surface charge. At a tested materials, activated carbon was the best attachable material and microorganisms were attached $20.1{\times}10^7CFU/cm^2$ at surface, compared with diatomaceous earth which were attached of $9.2{\times}10^7CFU/cm^2$ in our research, surface area and hydrophobicity show- ed more Influence than any other factor on attachment of microorganisms.

  • PDF

Development of Outer Support Ring using Complex Forging Processes (복합단조 공정을 적용한 Outer Support Ring 개발)

  • Ju, Won Hong;Park, Sung-young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.653-659
    • /
    • 2017
  • In this study, the complex forging process of an outer support ring was developed and the prototype was manufactured. The current process, hot forging and MCT machining, has a disadvantage of excessive material removal rates and longer machining hours. To overcome this disadvantage, a general shape is given through hot forging and the precision is achieved through cold forging. The complex forging process was developed with the minimal machining process. Forging analysis was carried out to design a forging process using the commercial program, Deform-3D. The hot and cold forging processes were set up based on the analyzed result. The mold and prototype were manufactured. Hardness, surface roughness, internal defect, the grain low line of the prototype were evaluated. The results showed no particular problems, and there were no problems in mass production. Using complex forging, the material was reduced by approximately 27 % compared to the process using hot forging and MCT machining. In addition, the production speed was improved 2.15 fold compared to that of hot forging and MCT machining. Through this study, a cost-effective process and mold design technology were established, which is expected to have positive effects on other related automotive parts production.

A development of creative capstone design process by product and mold design (제품 및 금형 연계 창의 캡스톤 디자인 교육과정에 관한 연구)

  • Kim, Kyung-A;Han, Seong-Ryeol
    • Design & Manufacturing
    • /
    • v.13 no.4
    • /
    • pp.45-50
    • /
    • 2019
  • The fourth industrial revolution calls for an integrated talent by improving working-level skills within the big framework of creativity and convergence. Therefore, university education focuses on solving the problem of practical ability education by improving employment ability. Based on this improvement in practical skills, this study is based on the field-based design curriculum of Capstone. Currently, the Capstone Design Course is being implemented at most universities, extending its scope to the fields of engineering, humanities, social studies and arts. However, there is a limit to the core concept of Capstone design education and capacity education developed in line with the foreign educational environment and applied directly to our nation's university education. In terms of overseas cases, the core focus is to develop practical, design, and prototype capabilities by forming a team among all grades and multidisciplinary institutions to support the capital and manpower of the industry. However, the nation's industrial linkage and curriculum have difficulties in carrying out multi-disciplinary education. In this study, students were asked to team up and solve the challenges that the industry needs based on the expertise acquired in the lower grade curriculum by applying majors and 3D printing through the first and second semester courses of the fourth grade to address these limitations. In addition, business skills for the process of creativity and leadership experience in our country through a suitable design capstone class to review the efficiency of education by applying a model. In order to achieve the purpose of Capstone design subject, the goal setting, class model composition, class model application, verification and evaluation, and final class model development procedures were carried out. Through this process, it will be used as a basic material for educating design class capstone design.

Thermally Stabilized Porous Nickel Support of Palladium Based Alloy Membrane for High Temperature Hydrogen Separation

  • Ryi, Shin-Kun;Park, Jong-Soo;Cho, Sung-Ho;Hwang, Kyong-Ran;Kim, Sung-Hyun
    • Corrosion Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.133-139
    • /
    • 2007
  • Nickel powder was coated with aluminum nitrate solution to increase the thermal stability of a porous nickel support and control the nickel content in the Pd-Cu-Ni ternary alloyed membrane. Raw nickel powder and alumina coated nickel powder were uniaxialy pressed by home made press with metal cylindrical mold. Though the used nickel powder prepared by pulsed wire evaporation (PWE) method has a good thermal stability, the porous nickel support was too much sintered and the pores of porous nickel support was plugged at high temperature (over $800^{\circ}C$) making it not suitable for the porous support of a palladium based composite membrane. In order to overcome this problem, the nickel powder was coated by alumina and alumina modified porous nickel support resists up to $1000^{\circ}C$ without pore destruction. Furthermore, the compositions of Pd-Cu-Ni ternary alloy membrane prepared by magnetron sputtering and Cu-reflow could be controlled by not only Cu-reflow temperature but also alumina coating amount. SEM analysis and mercury porosimeter analysis evidenced that the alumina coated on the surface of nickel powder interrupted nickel sintering.

A Support System for Searching Robust Injection Molding Condition (안정적인 사출성형조건의 탐색을 위한 지원시스템)

  • Kim, Bo-Hyun;Baek, Jae-Yong;Yi, Il-Lang
    • IE interfaces
    • /
    • v.18 no.1
    • /
    • pp.73-81
    • /
    • 2005
  • Injection molding has been widely used in producing plastic parts in large quantities. However, its productivity mainly depends on the expertise and experience of skilled workers because of the difficulty and complexity to determine a robust injection molding condition which is not influenced by the minor operational variation of an injection molding machine and produces good parts continuously. This study analyzes the defect types of the parts and proposes a support system to assist users in determining the robust process condition. The support system calculates the start condition from the information of an injection mold, the injection molding machine, the resin used, and the part. Through the iterative step which updates the condition using the defect information of the part tested, users can obtain the initial condition which produces the part without any problem for the first time. The support system also assists users in obtaining the robust condition from the initial condition using the technique of experimental design. To prove the validity of the support system, this study implements it in the control panel of the injection molding machine.