• Title/Summary/Keyword: Mold Rotation

Search Result 29, Processing Time 0.021 seconds

A Study on the Wear Characteristics of the Ball End Mill According to the AlTiN Coated Layers (AlTiN 코팅 층수에 따른 볼 엔드밀의 마모특성에 관한 연구)

  • Cho, Gyu-Jae;Lee, Seung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.54-61
    • /
    • 2010
  • In this research KP-4, one of the plastic mold steels, was coated with the AlTiN from one layer to four layers by the PVD method in the $\Phi$ cemented carbide ball end mill. Coated KP-4 was processed with various conditions. For example, slope of $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$ the spindle rotation speed was changed from 10,000rpm to 16,000rpm, the tool feeding speed was changed from 1,300mm/min to 1,700mm/min, the depth of cut was also changed from 0.3mm to 0.9mm, and etc. Cutting component force according to the coating layer number, surface roughness, and the wear of tool were studied.

A Study on the Surface Properties Test of the Grinding Disk Assembly for Crushing Materials in Secondary Cells (이차전지 원료 해쇄용 그라인딩 디스크 어셈블리 표면 특성 시험에 관한 연구)

  • Sang-Pil Han;Dong-Hyuk Lee
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.33-41
    • /
    • 2023
  • Metal raw materials and chemical additives, which are raw materials for secondary batteries, are pulverized by the high-speed rotation of the Grinding Disc of the Classifier Separator Mill (CSM). Grinding discs are required to withstand abrasion, corrosion, high-speed rotational force and impact. In order to analyze the stability of domestic and foreign grinding discs, quality tests including surface roughness, surface lubrication, surface state measurement, and surface 3D shape measurement were analyzed. When producing developed products, it shows that excellent products can be produced.

A Study on the Quality Test of Grinding Disk Assembly for Crushing Material in Secondary Battery (이차전지 원료 해쇄용 Grinding Disc Assembly 품질 시험에 관한 연구)

  • Sang-Pil Han;Dong-Hyuk Lee
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.42-46
    • /
    • 2023
  • Currently, fossil resources are depleting rapidly. We are looking for energy to replace fossil fuels. They are trying to use electricity to replace internal combustion locomotives. Secondary battery raw materials and chemical additives are pulverized by the high-speed rotation of the grinding disc of the Classifier Separator Mill. Grinding Disc Assembly requires characteristics to withstand abrasion, corrosion, high-speed rotational force and impact. Domestic and foreign grinding discs were analyzed through abrasion resistance, hardness, bending strength, and tensile adhesion strength tests.

A Study on the Optimum Design of Power Vice-Strengthening Device (파워바이스 증력장치 최적설계에 관한 연구)

  • Lee, Gyung-Il;Jung, Yoon-soo;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.69-74
    • /
    • 2017
  • In the current machining industry, machining precision is necessary and machining is being carried out. In this ultra-precision machining industry, the fixation of the workpiece is very important and the degree of machining depends on the degree of fixation of the workpiece. In ultra-precision machining, various methods, such as using a vise chuck or the like and using bolt nut coupling, are used for fixing a workpiece to an existing machine tool. In particular, when the precision gripping force of the jig is insufficient during machining of the ultra-precision mold parts, the machining material shakes due to the vibration or friction, and the machining precision is lowered. In the ultra-precision machining of power transmission parts, such as gears, the accuracy of the product is then determined. In addition, the amount of heat generated during machining has a significant effect on the machining accuracy. This is because the vibration value changes according to the grasp force of the jig that fixes the workpiece, and the change in the calorific value due to the change in the main shaft rotation speed of the ultra-precision machining. The increase in the spindle rotation speed during machining decreased the heat generation during machining, and the machining accuracy was also good, and it was confirmed that the machining heat changed according to the fixed state of the workpiece and the machining accuracy also changed. In this study, we try to optimize the driving part of the power vise by using structural analysis, rather than the power vise, using the basic mechanical-type power unit.

Simulation of Run-out caused by Imperfection of Ball Bearing for High-speed Spindle Units

  • Zverev Igor Aexeevich;Eun In-Ung;Chung Won-Jee;Lee Choon-Man
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.3
    • /
    • pp.3-7
    • /
    • 2006
  • For the purpose to improve and to automate designing of high-speed spindle units (SU's), we have developed the mathematical models and software to estimate SU performance characteristics, including the run-out of spindles running on ball bearings. In order to understand better the mechanics of high-speed SUs, the dynamic interaction of ball bearings and SU, and the influence of the bearing imperfections and SU's operational conditions on the run-out, we have carried out computer simulation and experimental studies. Through the study of SU's, we have found out that run-out of SU can vary drastically with variation of rpm. The influences of rotation speed and of accuracy parameters of bearings on the SU accuracy have the greatest importance. The influence of bearing preload has a secondary importance. Comparison of the results of these studies has demonstrated adequacy of the models and software developed to the real SU's.

Occurrence of Major Diseases in Vegetable Growing under the Furnihsed Condition in Southern Part of Korea (남부 시설원예지대의 주요병 발생생태에 관한 연구)

  • Choi Jin-Sik;Park Chang-Seuk
    • Korean journal of applied entomology
    • /
    • v.21 no.3 s.52
    • /
    • pp.153-158
    • /
    • 1982
  • The study was conducted to obtain the basic information on the diseases epidemics of vegetable crops grown in Namji, Jinju, Gimhae and Suncheon under the extremely varied and specified conditions, plastic film house. The disease survey was conducted from the end of April, 1951 to April 1982. Leaf mold and late blight were serious foliar disease in tomato during the seedling stage, especially when the infected seeds were sown. The diseases increased rapidly 35 days after seeding. In both continuous cultivation of cucumber and rotation with upland crops, incidence of Fusarium wilt was severe while incidence of the disease was negligible in cultivations after paddy rice or grafting on pumpkin. Downy mildew of cucumber was severe in Jinju and Suncheon area, however, it was not so serious in Namji area where the growing season of cucumber was unfavorable for the maximum disease incidence. Cucumber mosaic virus disease was prevalent in the areas surveyed and the disease incidence was increased rapidly after June. Powdery mildew prevailed at the early stage of cucumber growth after transplanting in Namji area. Root rot and wilting caused by Phytophthora capsici was as the most destructive disease in pepper grown under the vinyl house, especially in Namji and Jinju area where the pepper has been cultivated intensively. The Phytophthora attacked most parts of young plants during the winter time and then induced crown rot on the adults plants. Cultivation of pepper in vinyl house was almost impossible because of the Phytophora disease by the end of June. Virus diseases to tomato plants were prevalent throughout the surveyed area and the damage was also severe. In Jinju and Gimhae area leaf mold and late blight showed high infection rate in tomato during the harvest time.

  • PDF

A Method of Hole Pass-Through Evaluation for EDM Drilling (방전드릴링에서 홀 관통 평가 방법)

  • Lee, Cheol-Soo;Choi, In-Hugh;Heo, Eun-Young;Kim, Jong-Min
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.3
    • /
    • pp.220-226
    • /
    • 2012
  • The Electric discharge machining (EDM) process is used to minimize the difference between designed feature and machined feature while the most workpiece is removed through the cutting processes. The tiny-deep hole machining and perpendicular wall machining in mold and die are good applications of EDM. Among EDM equipment, the super drill uses the hollowed electrode to eliminate the debris which causes the second discharge with the electrode and degrades the machining quality. Through the hollow, the high pressured discharge oil is supplied to remove the debris together with the spindle rotation. The thin-hollow electrode tends to easily wear out compared to the sold die-sinking electrode and its wear rate is might not allowed to monitor in real time during discharging. Up to now, the wear amount is measured by off line method, which leads machining time to increase because the hole pass-through moment can be check by visual (manually) with the extra tool path. Therefore, this study suggests the attractive method to evaluate the hole pass-through moment in which the gap voltage and z-axis encoder pulse are monitored to predict the moment. The commercial super drill is used to validate the proposed method and the experiment is carried out.

A Study on Thermal Flow Analysis in Grinding Disc Assembly for Disintegration of Secondary Battery Materials (이차전지 원료 해쇄용 그라인딩 디스크 어셈블리 내 열 유동 해석에 관한 연구)

  • Dong-Min Yun;Yong-Han Jeon
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.34-39
    • /
    • 2022
  • Sustained economic development around the world is accelerating resource depletion. Research and development of secondary batteries that can replace them is also being actively conducted. Secondary batteries are emerging as a key technology for carbon neutrality. The core of an electric vehicle is the battery (secondary battery). Therefore, in this study, the temperature change by the heat source of the hammer and the rotational speed (rpm) of the abrasive disc of the Classifier Separator Mill (CSM) was repeatedly calculated and analyzed using the heat flow simulation STAR-CCM+. As the rotational speed (rpm) of the abrasive disk increases, the convergence condition of the iteration increases. Under the condition that the inlet speed of the Classifier Separator Mill (CSM) and the heat source value of the disc hammer are the same, the disc rotation speed (rpm) and the hammer temperature are inversely proportional. As the rotational speed (rpm) of the disc increases, the hammer temperature decreases. However, since the wear rate of the secondary battery material increases due to the strong impact of the crushing rotational force, it is determined that an appropriate rpm setting is necessary. In CSM (Classifier Separator Mill), it is judged that the flow rate difference is not significantly different in the direction of the pressure outlet (Outlet 1) right above the classifier wheel with the fastest flow rate. Because the disc and hammer attachment technology is adhesive, the attachment point may deform when the temperature of the hammer rises. Therefore, it is considered necessary to develop high-performance adhesives and other adhesive technologies.

IoT-Based Device Utilization Technology for Big Data Collection in Foundry (주물공장의 빅데이터 수집을 위한 IoT 기반 디바이스 활용 기술)

  • Kim, Moon-Jo;Kim, DongEung
    • Journal of Korea Foundry Society
    • /
    • v.41 no.6
    • /
    • pp.550-557
    • /
    • 2021
  • With the advent of the fourth industrial revolution, the interest in the internet of things (IoT) in manufacturing is growing, even at foundries. There are several types of process data that can be automatically collected at a foundry, but considerable amounts of process data are still managed based on handwriting for reasons such as the limited functions of outdated production facilities and process design based on operator know-how. In particular, despite recognizing the importance of converting process data into big data, many companies have difficulty adopting these steps willingly due to the burden of system construction costs. In this study, the field applicability of IoT-based devices was examined by manufacturing devices and applying them directly to the site of a centrifugal foundry. For the centrifugal casting process, the temperature and humidity of the working site, the molten metal temperature, and mold rotation speed were selected as process parameters to be collected. The sensors were selected in consideration of the detailed product specifications and cost required for each process parameter, and the circuit was configured using a NodeMCU board capable of wireless communication for IoT-based devices. After designing the circuit, PCB boards were prepared for each parameter, and each device was installed on site considering the working environment. After the on-site installation process, it was confirmed that the level of satisfaction with the safety of the workers and the efficiency of process management increased. Also, it is expected that it will be possible to link process data and quality data in the future, if process parameters are continuously collected. The IoT-based device designed in this study has adequate reliability at a low cast, meaning that the application of this technique can be considered as a cornerstone of data collecting at foundries.