• Title/Summary/Keyword: Mold Parts

Search Result 638, Processing Time 0.024 seconds

Finite Element Analysis of Induction Heating Process for Development of Rapid Mold Heating System (급속 금형가열 시스템 개발을 위한 고주파 유도가열 과정의 유한요소해석)

  • Hwang, J.J.;Kwon, O.K.;Yun, J.H.;Park, K.
    • Transactions of Materials Processing
    • /
    • v.16 no.2 s.92
    • /
    • pp.113-119
    • /
    • 2007
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. Induction heating is an efficient way to heat material by means of an electric current that is caused to flow through the material or its container by electromagnetic induction. It has various applications such as heat treatment, brazing, welding, melting, and mold heating. The present study covers a finite element analysis of the induction heating process which can rapidly raise mold temperature. To simulate the induction heating process, the electromagnetic field analysis and transient heat transfer analysis are required collectively. In this study, a coupled analysis connecting electromagnetic analysis with heat transfer simulation is carried out. The estimated temperature changes are compared with experimental measurements for various heating conditions.

A study of Insulation Diagnosis for Large-Capacity Mold Transformer (대용량 몰드변압기 정밀절연진단 결과 고찰)

  • Lee, Eun-Chun;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.10
    • /
    • pp.75-81
    • /
    • 2014
  • When the large-capacity Mold type Transformer was passed through rain, after it was dried and it's parts were changed, Insulation Diagnosis was made to evaluate the condition of it and decide to recharge. Using the evaluation of Insulation Diagnosis, the urgent decision-making for recharge made blackout time minimum. In this study, it was considered that Insulation Diagnosis for the large-capacity Mold type Transformer is applied to decision-making for reuse of high voltage electric power equipment by analysis of the case study.

The decision of forming condition and design of injection mold by considering contraction rate of POM resin (POM 수지의 수축율을 고려한 사출금형설계 및 성형조건 선정)

  • Lee, K.Y.;Kim, H.M.;Park, S.S.;Park, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.180-183
    • /
    • 2006
  • The contraction rate is a very important element that dominate quality of product in plastic injection molding. To get wanted products, the contraction rate of used resin must be considered necessarily when designing plastic injection molds, and suitable deform conditions must be chosen with this. In this paper, important parts used in LED department were produced by injection mold using POM resin, and dimension error that happened by contraction rate of resin was corrected and reflected in die design and suitable deform conditions were decided.

  • PDF

Research on the Mold Design of Motor Housing using Die Casting Process (다이캐스팅에 의한 모터 하우징의 금형설계에 관한 연구)

  • Han, Kyu-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.36-41
    • /
    • 2015
  • In this paper, research on the mold design of motor housing produced by the HPDC process was conducted using computer simulations and experiments. Recently, automobile parts have been required to be light and have high strength. The die casting process was used to manufacture automotive motor housings. In the die casting process, the control of casting defects is very important. However, it has usually depended on the experience of the foundry engineer. For the analysis of the manufacturing process of motor housing, the finite element method is applied. Through the simulations using commercial software, the filling pattern and product defects could be confirmed. The analysis results obtained from the filling behavior of the casting process agreed with the experimental results. The computer simulation results of filling behavior were reflected in the optimal mold design of motor housing.

A Study on the Injection Molding Technology by Micro Multi-Square Strucrure Mold (다중 미세 각주 구조물의 사출성형기술 연구)

  • 제태진;신보성;박순섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1061-1064
    • /
    • 1997
  • Micro injection molding technology is very important fiw mass product of micro structures or micro parts. And, it is so difficult that the molding technology of micro pole or thin wall(barrier rib) structures with high aspect ratio. In this stud). \vc intend to research on the basic technology of micro wall structure part:< with high aspect ratio by the inject~on moldins method. The mold for esperimenrs with micro multi-square structures was made by L, I(;A process. One square polc's size is 157 157pm. height 50011111. And the distance of each poles is 5011n1. 7'hus. molding products will be for~nctl like as the net structure with thin wall of about 50pn thickness.(aspect ratio 10) Ihrough the e~lxriment. \be obtained the prociuctr of micro multi-square slructure with bout 37.000 cell per a piece. 'Ihe micro injection molding process technolog for thin wall by multi-square structure mold was analy~cd.

  • PDF

Application of Design Process Modeling for Mold Design (설계 과정 모델링 기법을 적용한 금형 설계)

  • 장진우;임성락;김석렬;이상헌;우윤환;이강수;허영무;양진석;배규형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.954-957
    • /
    • 2002
  • The objective of design process modeling is a systematic support of rapid redesign process fur a modified input data. The design process modeling is realized by storing key parameters or geometric entities used in the intermediate design steps and reusing them for change of the designed parts or assemblies according to the modified input. In this paper, we adopted and implemented the design process modeling approach to our injection mold design system developed based on the Unigraphics system. It was proved that the productivity of mold redesign process is raised highly by introducing the design process modeling technique mold design system.

  • PDF

Development of Expert Process Planning System for Injection Mold (사출금형의 공정설계 전문가시스템의 개발)

  • 조규갑;임주택;노형민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2252-2260
    • /
    • 1992
  • This paper deals with development of expert process planning system which automatically generates process plan for manufacturing parts of injection mold. The specific domain of study is two-plate injection mold without support plate. Decision making rules for selection of machining processes machine tools, cutting tools and for determination of sequence of machining operations are acquired by interview of skilled process planner. The developed expert process planning system is programmed by using expert system shell CLIPS on the IBM PC/AT. The proposed system works well to real problems.

A Case Study of Process Monitoring System for Mold Production with Ubiquitous Technology (유비쿼터스 기술 기반의 금형제조 공정관리 시스템 사례 연구)

  • Choi, Young;Kim, Jung-Joon;Yang, Sang-Wook;Park, Jin-Pyo;Kwon, Ki-Eak
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.3
    • /
    • pp.168-175
    • /
    • 2009
  • A recent advance in RFID technology is one of the major technological drives in reducing cost in logistics, distribution and even in the manufacturing sector. However, currently the technology is practically accepted only in the area of logistics and inventory control. The characteristic of these application areas is that the technology is used in the controllable environment. In this paper, we discuss a case study of using active and passive RFID technologies to automatically gather process information in the mold factory. Active RFID tags are attached on the main parts of molds and their positions in the floor are tracked with the routers. We also discuss on the idea of using mobile device with RFID reader to inquire information for molds on the spot in the factory floor. The inquirable information includes 3D design data and basic mold data. The paper shows implementation results with hardware configuration for the testbed.

A Study on Scheduling System for Mold Factory Using Neural Network (신경망을 이용한 금형공장용 일정계획 시스템에 관한 연구)

  • Lee, Hyoung-Kook;Lee, Seok-Hee
    • IE interfaces
    • /
    • v.10 no.3
    • /
    • pp.145-153
    • /
    • 1997
  • This paper deals with constructing a scheduling system for a mold manufacturing factory. The scheduling system is composed of 4 submodules such as pre-processor, neural network training, neural networks and simulation. Pre-processor analyzes the condition of workshop and generates input data to neural networks. Network training module is performed by using the condition of workshop, performance measures, and dispatching rules. Neural networks module presents the most optimized dispatching rule, based on previous training data according to the current condition of workshop. Simulation module predicts the earliest completion date of a mold by forward scheduling with the presented dispatching rules, and suggests a possible issue date of a material by backward tracking. The system developed shows a great potential when applied in real mold factory for automotive parts.

  • PDF

Development of Dental Scaler Tip Mold with Powder Injection Molding Process

  • Hwang, C.J.;Ko, Y.B.;Park, H.P.;Chung, S.T.;Rhee, B.O.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.499-500
    • /
    • 2006
  • With the capability of net shaping for complex 3D geometry, powder injection molding (PIM) is widely used for automotive parts, electronics and medical industry. In this study, an ultrasonic dental scaler tip produced by machining process was redesigned for the PIM process. An injection mold was designed and machined to produce the dental scaler tip by the PIM process.

  • PDF