• Title/Summary/Keyword: Mold Heating

Search Result 172, Processing Time 0.034 seconds

A method for Thermal Control of Nano Injection Molding using the Peltier Devices (펠티어 소자를 이용한 나노 사출 금형의 능동형 온도 제어)

  • Shin, H.;Kwon, J.;Hong, N.;Seo, Y.;Kim, B.
    • Transactions of Materials Processing
    • /
    • v.17 no.5
    • /
    • pp.337-342
    • /
    • 2008
  • The injection molding process has high accuracy and good reproducibility that are essential for mass production at low cost. Conventional molding processes typically use the water-based mold heating and air cooling methods. However, in the nano injection molding processes, this semi-active mold temperature control results in the several defects such as air-flow mark, non-fill, sticking and tearing, etc. In order to actively control temperature of the molds and effectively improve the quality of the molded products, the novel nano injection molding system, which uses active heating and cooling method, has been introduced. By using the Peltier devices, the temperature of locally adiabatic molds can be controlled dramatically and the quality of the molded patterns can be improved.

Heating type of die surface for removing weld line using high temperature air jet (웰드라인 제거를 위한 고온 기체 분사를 이용한 금형 표면의 가열기법)

  • Kim, Gyeong-Ha;Kim, Sun-Gyeong;Yu, Yeong-Eun;Jea, Tae-Jin;Choi, Du-Seon
    • Design & Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.10-14
    • /
    • 2008
  • The application range of injection molded parts is expanding by the development of engineering plastics with good mechanical properties. Plastic products are specially used as automotive parts due to an excellent performance in the characteristics of a strength vs. weight. In this study, heating type of new method such as jet injection was applied to improve heat transfer coefficient is substituted for heating method of injection molding.

  • PDF

Non-Heat Sterilization of Yujacheong Using Ozone Treatment (오존처리를 이용한 유자청의 비가열살균)

  • Bo-Bae Lee;Chang-Yong Yoon;Seung-Hee Nam
    • The Korean Journal of Food And Nutrition
    • /
    • v.36 no.4
    • /
    • pp.334-339
    • /
    • 2023
  • To suppress mold generation of yujacheong, Penicillium chrysogenum LB31 was cultured, and spores were harvested and put into yujacheong. Antioxidant activity, useful ingredients, mold size and incidence were investigated while storing yujacheong for 30 days, after sterilization with different methods (nontreatment, ozone gas emission, heating after ozone gas emission and heating). The results showed that the content of narirutin, naringin, hesperidin, or neohesperidin, which are functional components of yuzu, increased as the storage period increased in all the treatment units. In addition, mold generation was not observed until the 15th day in the heat treatment group after ozone gas emission. As the treatment group emitted ozone gas. molds of 34.8 and 112 mm2 in size were observed on the 30th day. These results suggested that ozone sterilization can prevent microbial contamination, further extending the shelf life of yuzacheong and maintaining a fresh state.

Inverse Heat Transfer Analysis at the Mold/Casting Interface in the Aluminum Alloy Casting Process with Precision Metal Mold (정밀금형 알루미늄 합금주조공정시 주물/금형 접촉면에서의 Inverse 열전달해석에 관한 연구)

  • Moon, Su-Dong;Kang, Shin-Ill
    • Journal of Korea Foundry Society
    • /
    • v.18 no.3
    • /
    • pp.246-253
    • /
    • 1998
  • Precision metal mold casting process is a casting method manufacturing mechanical elements with high precision, having heavy/light alloys as casting materials and using permanent mold. To improve dimensional accuracy and the final mechanical properties of the castings, the solidification speed and the cooling rate of the casting should be controlled with the optimum mold cooling system, and moreover, to obtain more accurate control of the whole process interfacial heat transfer characteristic at the mold/casting interface must be studied in advance. In the present study, aluminum alloy casting system with metal mold equipped with electrical heating elements and water cooling system was designed and the temperature histories at points inside the metal mold were measured during the casting process. The heat transfer phenomena at the mold/casting interface was characterized by the heat flux between solidifying casting metal and metal mold, and the heat flux history was obtained using inverse heat conduction method. The effect of mold cooling condition upon the heat flux profile was examined, and the analysis shows that the heat flux value has its maximum at the beginning of the process.

  • PDF

Flexible Mold Production Process for Using the PCM (PCM을 활용한 가변형 몰드 제작 프로세스)

  • Kim, Taekoo;Lee, Donghoon;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.272-273
    • /
    • 2014
  • Existing the free-form concrete segments (FCS) mold is produced by state of solid such as steel, wood, Styrofoam that can not be recycled. Using FCS mold result in delay on schedule and decrease of productivity because it consists of irregular curved variety and it requires more time than fixed mold. Thus, FCS mold should be developed which can reduce the costs and also it can be used as semipermanent. The aim of this study is to suggest of flexible mold production process for using the phase change materials(PCM). PCM is maintain that its solid state at low temperature but it changes phase to liquid state by heating. PCM is suitable material for flexible mold due to change of phase in relatively high temperature compare to other phase change materials such as water. Flexible mold is possible that reuse semi-permanently made by PCM. Thus, this study is proposed the process of flexible mold production for using the PCM. The study results will be used as the basic theory for studies on production and installation of FCS.

  • PDF

Integrated Numerical Analysis of Induction-Heating-Aided Injection Molding Under Interactive Temperature Boundary Conditions (열-유동 상호작용을 고려한 유도가열 적용 미세 사출성형의 통합적 수치해석)

  • Eom, Hye-Ju;Park, Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.575-582
    • /
    • 2010
  • In recent years, several rapid-mold-heating techniques that can be used for the injection molding of thin-walled parts or micro/nano structures have been developed. High-frequency induction heating, which involves heating by electromagnetic induction, is an efficient method for the rapid heating of mold surfaces. The present study proposes an integrated numerical model of the high-frequency induction heating process and the resulting injection molding process. To take into account the effects of thermal boundary conditions in induction heating, we carry out a fully integrated numerical analysis that combines electromagnetic field calculation, heat transfer analysis, and injection molding simulation. The proposed integrated simulation is extended to the injection molding of a thin-wall part, and the simulation results are compared with the experimental findings. The validity of the proposed simulation is discussed according to the ways of the boundary condition imposition.