• Title/Summary/Keyword: Mold Heating

Search Result 172, Processing Time 0.03 seconds

Improved Surface Characteristics of Automotive Interior Parts Fabricated by Injection Molding Method (사출법으로 제조된 자동차 내장부품의 표면특성 개선 연구)

  • Choi, Dong-Hyuk;Hwang, Hyun-Tae;Son, Dong-Il;Kim, Daeil
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.1
    • /
    • pp.43-51
    • /
    • 2019
  • The environmental pollution which is global warming and abnormal climate is caused by increasing population and activated economics. To reduce environmental pollution, we have being efforts into reducing $CO_2$ emission and use of energy, resources. Especially, for the sake of light weight and fuel efficiency of automotive industry, many countries have defined the restrict environmental regulation which stipulate high magnitude of reducing $CO_2$ emission. In this study, we have predicted the problem of Mu-cell injection molding through the finite element analysis as a function of temperature controlled by Joule heating or in terms of mold temperature. From the result of finite element analysis, we have determined the optimized process and made the injection mold included electric current heating system with Mu-cell manufacturing. Lastly, we analyzed the surface characteristics of the injection products with mold temperature.

Developed Compact Injection Molding Machine for Desktop (탁상용 소형 사출 성형기 개발)

  • Lee, Byung-Ho;Shin, Dong-Hwa
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.5
    • /
    • pp.257-263
    • /
    • 2018
  • It is a small injection molding machine for table top considering the material heating mechanism and the design and structure stability by securing the mechanism that compresses the inside of the material heating tube by using the electric actuator and by providing space between the body and the material heating tube to reduce heat loss Develop body. An electric actuator suitable for applying pressure to the inside of a material heating tube is a mechanical system composed of a rigid structure. Since a large force is repeatedly applied to the electric actuator and the push rod, the interaction between the moving parts and the dynamic Maximum stress through analysis and prediction of fatigue life of critical parts The pushrod reflects the structural analysis results of the electric actuator and the push rod, and pushes the inside of the material heating tube by the push rod to inject the molten material from the nozzle into the mold. The pushrod operates by the operation of the electric actuator. The material heated by the coil heater is ejected through the nozzle by the pressure of the material heating tube, and the material heating tube and the nozzle are also lowered at the same time as the push rod is lowered, so that the material is closely adhered to the mold. We want to study the completion of the injection.

Investigation into Heat Transfer Characteristics of an Injection Mold by Considering Thermal Contact Resistance (열접촉 저항을 고려한 사출금형의 온도분포특성 고찰)

  • Kim, Kyung-Min;Lee, Ki-Yeon;Sohn, Dong-Hwi;Park, Keun
    • Transactions of Materials Processing
    • /
    • v.20 no.1
    • /
    • pp.29-35
    • /
    • 2011
  • In the design of the injection molding process, various parameters including mold design parameters and molding conditions should be investigated to improve part quality. The mold temperature is one of important processing parameters that affect the flow characteristics, surface appearance, part deformation, mechanical properties, etc. Numerical analyses have been used to predict the temperature distribution of the mold under the given cooling or heating conditions. However, conventional analyses have been performed by assuming that the mold material is a single solid even though a number of plates are assembled to construct an injection mold. In the present study, a numerical approach considering the thermal contact resistance is proposed to provide more reliable prediction of the mold temperature distribution by reflecting the heat-resistance between assembled mold plates.

A Study on a In-mold Packaging Process using Injection Molding (사출성형을 이용한 마이크로 채널의 패키징 공정에 관한 연구)

  • Lee, Kwan-Hee;Park, Duck-Soo;Yoon, Jae-Sung;Yoo, Yeong-Eun;Choi, Doo-Sun;Kim, Sun-Kyoung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1821-1824
    • /
    • 2008
  • A novel in-mold packaging process has been developed to manufacture devices with closed channels. In this unified process, fabrication of open channels and forming the rigid cover on top of them are sequentially integrated in the same mold. The entire process is comprised of two phases. In the first phase, the open channels are fabricated under an exquisitely controlled temperature and pressure using the conventional micro injection molding technology. In the second phase, the closed channels are fabricated by conducting the injection molding process using the molded structure with the open channels as a mold insert. As a result, the in-mold technology can eliminate the bonding processes such as heating, ultrasonic or chemical processes for cohesion between the channel and the cover, which have been required in conventional methods.

  • PDF

A STUDY ON THE RISK PROTECTION OF THE MOLD TRANSFORMER

  • Chung, Young-Ki;Jung, Jong-Wook;Kim, Jae-Chul;Kwak, Hee-Ro;Lee, Su-Kyung
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.219-226
    • /
    • 1997
  • This paper investigates and analyzes the installation and failure status of mold transformer being used in domestic subways and describes the extinguishing process by time through the combustion test of winding part of mold transformer. Condition of installed mold transformers and classes of fire were surveyed and the mold transformer was burned in a horizontal heating furnace. It was confirmed that the mold transformer is self extinguishing and nonflammability. According to this results, the suitable standard of fire protection for the mold transformer was demanded after review of domestic and abroad law. It is expected that the cost of fire protection equipment can be reduced by using the status and combustion test result of mold transformer.

  • PDF

Crystallinity and Mechanical Properties of Glass Fiber Reinforced Thermoplastic Composites by Rapid Press Consolidation Technique (Consolidation 방법에 의해 제작된 유리섬유강화 복합재료의 결정성과 기계적성질에 관한 연구)

  • Shin, Ick-Jae;Kim, Dong-Young;Lee, Dong-Joo
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.91-96
    • /
    • 2000
  • Glass fiber reinforced thermoplastic composites were manufactured by Rapid Press Consolidation Technique(RPCT) as functions of temperature, pressure and time in pre-heating, consolidation and solidification sections during the manufacturing processing. It was found that the material property is greatly affected by pre-heating temperature under vacuum, mold temperature and molding pressure. Among them, the temperature In the mold was the most critical factor in determining the mechanical properties and the molded conditions of specimen. The crystallinity of PET matrix was also investigated by differential scanning calorimetry(DSC) measurements for various processing conditions. The level of crystallinity($X_c$) depended strongly on the mold temperature, cooling rate and the type of composite. The difference in $X_c$ is believed to be one of important factors in characterizing the mechanical properties.

  • PDF

Effect on the Residual Stress of Cure Profiles, Fillers and Mold Constraints in an Epoxy System

  • Moon, Chang-Kwon;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.1-5
    • /
    • 2009
  • A dilatometer was used to investigate the effect of cure conditions, mold types and the presence of filler in an epoxy system. These studies showed shrinkage in the cured epoxy when heating it through the glass transition temperature region. The magnitude of the shrinkage, related to stress build up in the epoxy during curing, was influenced by the processing conditions, filler presence and the nature of the mold used to contain the resin. Cure and cyclic cure at a lower temperature, prior to a post cure, decreased the magnitude of observed shrinkage. Cure shrinkage decreased with the number of cyclic cures. Post cured samples outside the mold led to less shrinkage compared with samples in the mold. Sample cured in a silicon mold represented less shrinkage than sample cured in an aluminum mold. Sample containing kaolin filler showed less shrinkage than unfilled sample.

The Effect of Various Molding Methods for Precision Optical Products Using Birefringence Analysis (정밀 광학부품의 복굴절 분석을 통한 각종 성형법의 영향에 관한 연구)

  • Min, I.K.;Cho, S.W.;Yoon, K.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.1
    • /
    • pp.48-53
    • /
    • 2013
  • As the adoption of injection molding technology increases, injected-molded optical products require higher dimensional accuracy and optical stability than ever before. In the present study, four kinds of molding methods, i.e., conventional injection molding (CIM), injection/compression molding (ICM), rapid heat and cooling the mold(RHCM) and rapid injection/compression molding (RICM) were selected in order to investigate the optical anisotropy of a 7 inch Light Guide Plate(LGP) by examining the gap-wise distribution of birefringence and the extinction angle. The results indicate that the compression process can decrease flow-induced birefringence over the whole region and that rapid heating can decrease the birefringence level better than conventional molding. In addition, for the combination of compression and rapid heating a reversal flow was detected from the distribution of the extinction angle near the gate.