• Title/Summary/Keyword: Mold Heating

Search Result 172, Processing Time 0.03 seconds

Antimicrobial Activities of Commercially Available Tea on the Harmful Foodborne Organisms (식품유해균에 대한 차류 추출물의 항균효과)

  • 오덕환;이미경;박부길
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.1
    • /
    • pp.100-106
    • /
    • 1999
  • Use of chemical preservative for controlling harmful microorganisms in food products has been debated due to public concerns about food quality because of perceived toxic and carcinogenic potential. Thus, use of non toxic natural antimicrobial agents has become essential. This study was investigated to determine the antimicrobial activity of water or ethanol extract of commercially available tea, and of solvent fractionated ethanol extracts obtained from steamed green tea. Both of water and ethanol extracts of green tea(steamed or roasted), oolong tea and black tea exhibited strong antimicrobial activity against gram positive and negative bacteria, but not effective against yeast and mold. Also, antimicrobial activity of ethanol extract of 4 different kinds of tea was stronger than that of water extract. Among 4 different tea, ethanol extract of steamed green tea was further fractionated. One thousand g/disk buthanol extract had the strongest antimicrobial activity against bacteria and mold. The concentration of the antimicrobial activity of buthanol extract in tested microorganisms ranged from 125~1000 g/disk except for Rhizopus javanicus. Antimicrobial activity of buthanol extract of steamed green tea was not destroyed by heating at 100oC for 60 min and at 121oC for 15 min, which is very stable over heat treatment. The inhibitory effect of the buthanol extract on the growth of Listeria monocytogenes and Staphylococcus aureus was investigated. Growth of both strains was started in the presence of 250 and 500 g/ml after 12 and 24 hour respectively, whereas complete inactivation of both strains was occurred in the presence of 1000 g/ml.

  • PDF

Development and Analysis of the Autoclave Alternative Composite Material Molding Process Using a Pressure Device (가압장치를 이용한 오토클레이브 대체 복합재료 성형공정 개발 및 분석)

  • Kim, Jung-Soo;Kim, Byung-Ha;Joe, Chee-Ryong
    • Composites Research
    • /
    • v.27 no.6
    • /
    • pp.254-259
    • /
    • 2014
  • In this study, a device and pressure press process that is able to substitute autoclave process is developed. This process complements disadvantages of autoclave process which are long process-time and high production cost. The developed device provides air pressure as well as the vacuum which are greatest feature of autoclave process. The device is sealed using hydraulic pressure to keep the air pressure inside the mold. The transfer of the heat is designed to be direct. The heating and pressure charging time are decreased by reducing the interior space. Tooling cost is reduced dramatically compared to autoclave process. Spring-back phenomenon is measured and compared. The temperatures of several parts of the mold during molding are measured. The fiber volume fraction of the parts molded by autoclave process and by the developed process are compared.

Development of a High-throughput Micronanopatterning System Based on the Plastic Deformation Driven by Continuous Rigid Mold Edge Inscribing on Flexible Substrates (마이크로나노그레이팅 경질 몰드 모서리의 연속적 각인 소성가공 기반 유연 마이크로나노패턴의 고속 연속 제작 공정시스템 개발)

  • Lee, Seungjo;Oh, Dong Kyo;Park, Jaekyu;Kim, Jeong Dae;Lee, Jae Hyuk;Ok, Jong G.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.5
    • /
    • pp.368-372
    • /
    • 2016
  • In this study, we develop a novel high-throughput micronanopatterning system that can implement continuous mechanical pattern inscribing on flexible substrates using a rigid grating mold edge. We perform a conceptual design of the process principle, specific modeling, and buildup of a real system prototype. This research also carefully addresses several important issues related to processing and controlling, including precision motion, alignment, heating, and sensing to enable a successful micronanopatterning in a continuous and high-speed fashion. Various micronanopatterns with the desired profiles can be created by tuning the mold shape, temperature, force, and substrate material toward many potential applications involving electronics, photonics, displays, light sources, and sensors, which typically require a large-area and flexible configurations.

Analysis of cure behavior of low temperature curing liquid silicone rubber (LSR) for multi-material injection molding (이중사출 성형을 위한 저온 경화 액상실리콘고무 (LSR)의 경화 거동 분석)

  • Hyeong-min Yoo
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.1-5
    • /
    • 2023
  • In multi-material injection molding, since two or more materials with different process conditions are used, it is essential to maximize process efficiency by operating the cooling or heating system to a minimum. In this study, Liquid silicone rubber (LSR) that can be cured at a low temperature suitable for the multi-material injection molding was selected and the cure behavior according to the process conditions was analyzed through differential scanning calorimetry (DSC). Dynamic measurement results of DSC with different heating rate were obtained, and through this, the total heat of reaction when the LSR was completely cured was calculated. Isothermal measurement results of DSC were derived for 60 minutes at each temperature from 80 ℃ to 110 ℃ at 10 ℃ intervals, and the final degree of cure at each temperature was calculated based on the total heat of reaction identified from the Dynamic DSC measurement results. As the result, it was found that when the temperature is lowered, the curing start time and the time required for the curing reaction increase, but at a temperature of 90 ℃ or higher, LSR can secure a degree of cure of 80% or more. However, at 80 ℃., it was found that not only had a relatively low degree of curing of about 60%, but also significantly increased the curing start time. In addition, in the case of 110 ℃, the parameters were derived from experimental result using the Kamal kinetic model.

  • PDF

A Study on Plastic Injection Molding of a Metallic Resin Pigment using a Rapid Heating and Cooling System (급속가열냉각장치에 의한 금속성 안료 사출성형)

  • Lee, Gyu-Sang;Jin, Dong-Hyun;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.87-92
    • /
    • 2015
  • The injection molding process is widely used in the production of most plastic products. In order to make metal-colored plastic products like those found in modern luxury home alliances, metallic pigments are mixed with a basic resin material for injection molding. However, process control for metal-colored plastic products is extremely difficult due to the non-uniform melt flow of the metallic resin pigments. In this study, the effect of process parameters on the quality of a metal-colored plastic product is evaluated. A rapid mold cooling method using a compressed cryogenic fluid is also proposed to decrease the content of undesired compounds within the plastic product.

Mechanical Properties of Blast Furnace Slag Fineness Mortar according to Alkali Activator (알칼리 자극제 종류에 의한 고로슬래그 미분말 모르타르의 강도 특성)

  • Kim, Jong-Hee;Kim, Gyu-Yong;Shin, Kyoung-Su;Nam, Jeong-Soo;Koo, Kyung-Mo;Yun, Yong-Sang
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.217-218
    • /
    • 2011
  • The advantages of blast-furnace slag concrete may include lower hydration heating velocity, restraint on concrete temperature increase, long-age strength improvement due to latent hydraulic reaction, improved water tightness, and repulsion to chemical erosion. These advantages contribute to the high quality of the blast-furnace slag concrete. However, the blast-furnace slag concrete has its limitations as well. These disadvantages may include retarded setting and elongated retention of mold due to the weak strength of early-age. Nevertheless, much research is currently under way to improve the aforementioned issues. To improve activity of blast furnace slag powder, alkaline irritants has been used. In this study, we analyze effect on activity fineness and rate of substitution of Alkali Activator toward activity.

  • PDF

Characteristics of HTS tube fabricated by centrifugal forming process (원심성형법으로 제조한 고온초전도 튜브의 특성 분석)

  • Jang, Gun-Eik;Park, Yong-Min
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.211-215
    • /
    • 2000
  • Bi-2212 HTS tube was fabricated by CFP(Centrifugal Forming Process). Slury was prepared in the mixing ratio of 8:2 between powder and binder and ball-milled for 24 hrs. Slurry was initially charged into the rotating mold with 300${\sim}$450 rpm and heated at the temperature ranges of 840${\sim}$860$^{\circ}$C for partial melting to finally obtain a uniformly textured tube shape. It was observed the plate-like grains with more than 20 ${\mu}$m were well oriented along the rotating axis and the measured T$_c$ was around 67K. In this paper we will discuss and analyze the tube characteristics depending on many different processing parameters such as, powder composition, binder mixing ratio between powder and binder, motor speed, heating temperature and etc.

  • PDF

Fabrication of tungsten carbide by pulsed electric current heating (펄스통전가열에 의한 텅스텐 탄화물의 제조)

  • Hong, Seong-Hyeon;Kim, Hyun-Jin
    • Particle and aerosol research
    • /
    • v.5 no.4
    • /
    • pp.153-158
    • /
    • 2009
  • Tungsten carbide powder was fabricated with carbothermal reaction by pulsed electric current flowing in compact of tunsten oxide and carbon. The mixed powder of tunsten oxide and carbon was ball-milled into ultrafine powders. The mixed powder of tungsten oxide and carbon was put into carbon mold and heat-treated at $1050{\sim}1200^{\circ}C$ by pulsed electric current flowing. The formation of tungsten carbide powder could be achieved by heat treatment at $1200^{\circ}C$ for 10 minitues.

  • PDF

Study on the Friction Characteristics for AZ31 Sheet as Various Surface Treatment of SKD11 (SKD 11 금형 표면처리에 따른 AZ31 판재 마찰 특성 연구)

  • Chang, S.H.;Heo, Y.M.;Shin, K.H.;Kim, H.K.;Jeon, Y.J.
    • Transactions of Materials Processing
    • /
    • v.19 no.7
    • /
    • pp.429-434
    • /
    • 2010
  • The material used is a commercial magnesium based alloy AZ31(Mg-3Al-1Zn) sheet with a thickness of 0.8 mm. Friction tests at various temperatures(R.T. to $200^{\circ}C$) and at various holding forces in the 4 type molds were carried out to investigate the coefficient of friction. A warm drawing process with a local heating and cooling technique was developed in the Mg alloy sheet forming to improve formability because it is very difficult for Mg alloy to deform at room temperature by the conventional method. So, the coefficient of friction at various mold surface treatment conditions in this study was needed to develop the Mg alloy sheet forming technology.

A Study on Hot Extru-welding Dies of Aluminum Rods (알루미늄 봉재의 열간 압출접합 금형에 관한 연구)

  • Lee, Kyeng-Kook;Jin, In-Tai
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.27-30
    • /
    • 2008
  • It was investigated that two rods of aluminium can be welded by hot extru-welding method with extru-welding dies, and that the extru-welding on the welding surface were analyzed by computer simulation according to the steped shapes of welding dies. It was known by computer simulation that welding pressure on the welding section of rods welded using extru-welding dies and that the welding pressure on the welding section of rods using extru-welding dies is lowerer than the welding pressure of rods using stepped welding dies. And it was known by experiments that two rods of aluminium can be welded on the end sections by hot extru-welding method using fan-shaped stepped welding dies without relative rotational movement of contacted aluminium rods needed for the purpose of friction heating and pressure.

  • PDF