• Title/Summary/Keyword: Moisture flow

Search Result 408, Processing Time 0.019 seconds

Two-dimensional Coupled Moisture and Heat Flow Model and Sensitivity Analysis (이차원 복합적 습기와 열흐름의 분석모델과 민감도 분석)

  • Kim, Suk-Nam
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.99-107
    • /
    • 2003
  • Moisture flow and heat flow within pavement systems have been recognized as coupled processes with complex interactions between them. The distribution of moisture and temperature within pavement due to the moisture flow and heat flow varies not only seasonally but also vertically and horizontally. This paper presents an analysis model by the finite element method for the two-dimensional coupled moisture and heat flow in unsaturated soils. To test the model the analysis result by the model is compared with the analysis result by the software, GEO-SLOPE developed by GEO-SLOPE International Ltd. in Alberta, Canada. And a sensitivity analysis using ASTM method is performed to identify how model inputs affect the modeling analysis.

Numerical analysis on the flow field and moisture contamination in a dry room (Dry Room내 기류 및 수분오염에 관한 수치적 연구)

  • Lee, Kwan-Soo;Lim, Kwang-Ok;Jung, Young-Sick
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.865-870
    • /
    • 2000
  • The flow and the moisture contamination of the dry room in the manufacturing process of lithium ion battery are analyzed numerically by finite volume method. Standard ${\kappa}-{\varepsilon}$ turbulent model widely applied in predicting turbulent flow is adopted in this study. Moisture contamination and distribution are studied by assumption of two cases; one-point generation and uniform generation throughout the room. To evaluate ventilation efficiency on moisture contamination, scales of ventilation efficiency are introduced. From these analyses, moisture contamination is strongly dependent on the flow field and the radius of moisture contamination can be reduced by closing a part of outlets in a dry room.

  • PDF

Flow Properties of Water Additive Corn-Cob-Mix for Handling by Pump (수분(水分)첨가된 옥수수(Corn-Cob-Mix)의 펌프 운송(運送) 시(時)의 유체성질(流體性質) 구명(究明))

  • Oh, I.H.;Heege, H.J.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.1
    • /
    • pp.33-40
    • /
    • 1989
  • The flow properties of water added com-cob-mix(CCM) were studied in order to provide basic information for designing its pumping system. For the study, a model system similar to actual situation was constructed. From the experiment, it can be concluded that the flow properties of the water added CCM has close relationship with its moisture content as follows; 1. The pressure drop caused by friction was very low when the moisture content of water added CCM was more than 70%. However, when the moisture content of the material is about 60%, the pressure drop increases up to 10 kPa/m at low pumping speed, and 20 kPa/m at high pumping speed, respectively. 2. The water added CCM having about 65% moisture content showed pseudo-plastic flow characteristics. 3. As the moisture content of the material decreases, the shear stress increases more rapidly than the shear rate does. Finally, below approximately 60% moisture, the shear stress becomes a linear relationship with the shear rate. 4. It was possible to pump the material having the moisture content down to 58% through a pipe having 80 mm diameter by a pump operating at 234 rpm. However, by either increasing the diameter of the pipe or decreasing the pumping speed, it can be possible to pump the material having lower moisture content than 55%.

  • PDF

Development of a prediction model relating the two-phase pressure drop in a moisture separator using an air/water test facility

  • Kim, Kihwan;Lee, Jae bong;Kim, Woo-Shik;Choi, Hae-seob;Kim, Jong-In
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3892-3901
    • /
    • 2021
  • The pressure drop of a moisture separator in a steam generator is the important design parameter to ensure the successful performance of a nuclear power plant. The moisture separators have a wide range of operating conditions based on the arrangement of them. The prediction of the pressure drop in a moisture separator is challenging due to the complexity of the multi-dimensional two-phase vortex flow. In this study, the moisture separator test facility using the air/water two-phase flow was used to predict the pressure drop of a moisture separator in a Korean OPR-1000 reactor. The prototypical steam/water two-phase flow conditions in a steam generator were simulated as air/water two-phase flow conditions by preserving the centrifugal force and vapor quality. A series of experiments were carried out to investigate the effect of hydraulic characteristics such as the quality and liquid mass flux on the two-phase pressure drop. A new prediction model based on the scaling law was suggested and validated experimentally using the full and half scale of separators. The suggested prediction model showed good agreement with the steam/water experimental results, and it can be extended to predict the steam/water two-phase pressure drop for moisture separators.

A Coupled Moisture and Bent Flow Analysis Model in Unsaturated Soil (불포화토에서의 복합적 습기와 열흐름의 분석모델)

  • Kim, Suk-Nam;Kim, Suk-Nam
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.67-72
    • /
    • 2002
  • Water content of soils within pavement varies seasonally depending on climatic factors such as rainfall, temperature and so on, since a hydraulic gradient due to rainfall causes moisture flow, and a thermal gradient due to temperature change induces not only heat flow but also moisture flow directly and indirectly. Soils within pavement are usually in an unsaturated state, and heat flow and moisture flow have been recognized as coupled processes with complex interactions between them. This paper presents a one-dimensional analysis model by the finite element method for the coupled heat flow and moisture flow in unsaturated soils. The model can be used to predict not only the change of temperature and water content, but also frist heave with time. It will be a meaningful work for the design and maintenance of pavement to predict the change of the temperature and water content and frist heave. The model is tested through comparisons with the results by other models.

Numeric simulation of near-surface moisture migration and stress development in concrete exposed to fire

  • Consolazio, Gary R.;Chung, Jae H.
    • Computers and Concrete
    • /
    • v.1 no.1
    • /
    • pp.31-46
    • /
    • 2004
  • A methodology is presented for computing stresses in structural concrete members exposed to fire. Coupled heat and moisture migration simulations are used to establish temperature, pore pressure, and liquid-saturation state variables within near-surface zones of heated concrete members. Particular attention is placed on the use of coupled heat and multiphase fluid flow simulations to study phenomena such as moisture-clogging. Once the state variables are determined, a procedure for combining the effects of thermal dilation, mechanical loads, pore pressure, and boundary conditions is proposed and demonstrated. Combined stresses are computed for varying displacement boundary conditions using data obtained from coupled heat and moisture flow simulations. These stresses are then compared to stresses computed from thermal analyses in which moisture effects are omitted. The results demonstrate that moisture migration has a significant influence on the development of thermal stresses.

Simulation Model for Drying Characteristics of Batch-type Tunnel Dryer (배치식 터널 건조기의 고추 건조 시뮬레이션 모델 연구)

  • 황규준;고학균;홍지향;김종순
    • Journal of Biosystems Engineering
    • /
    • v.25 no.2
    • /
    • pp.89-96
    • /
    • 2000
  • In this study, experiments were performed for various drying air temperatures, air flow rates tray distance to analyze drying characteristics of batch type tunnel dryer. In comparison of tunnel drying with cabinet drying which is currently used in the farm, the results of drying simulation model of cabinet dryer was used and then the possibility of applying the drying simulation model of cabinet dryer to batch type tunnel dryer was investigated. The results showed that as the drying temperature increased, the drying rte and moisture difference in the direction of air flow increased and as the air flow rate increased, the drying rate increased and moisture differences decreased. In tunnel dryer, drying through bottom of the tray had large effect on drying rate and the effect was more significant when the drying temperature increased. As air flow rate increased, the difference of drying rates between tunnel and cabinet drying increased and drying rate of tunnel of drying was higher. The drying simulation model could estimate moisture content in tunnel more precisely by using modified effective moisture diffusion coefficient for air flow rate.

  • PDF

Development of a Rapeseed Reaping Equipment Attachable to a Conventional Combine (Ill) - Analysis of Principal Factor for Loss Reduction of Rapeseed Mechanical Harvesting - (보통형 콤바인 부착용 유채 예취장치 개발 (III) - 유채 기계 수확 손실 절감을 위한 요인 구명 -)

  • Lee, C.K.;Choi, Y.;Jun, H.J.;Lee, S.K.;Moon, S.D.;Kim, S.S.
    • Journal of Biosystems Engineering
    • /
    • v.34 no.2
    • /
    • pp.114-119
    • /
    • 2009
  • Field test was conducted to investigate primary factors reducing rapeseed harvesting using a reciprocating cutter-bar of combine. The results showed that the correlation between crop moisture content and yield loss had a U-type, which indicated that the yield reduction increased at too high and too low crop moisture contents. The proper ranges of crop moisture contents were 27${\sim}$35%, 21${\sim}$56%, and 62${\sim}$73% in case of grain, pod and stem, respectively. Crop moisture content was negatively correlated with header loss, but positively correlated with threshing loss. In contrary, stem moisture content showed positive correlations with total loss, threshing loss and separation loss. Working speed was positively correlated with header loss. Total flow rate, pod flow rate and stem flow rate were highly correlated with threshing loss and separation loss. However, grain flow rate did not show any correlation with total loss. According to the principal component analysis, two principal components were derived as components with eigenvalues greater than 1.0. The contribution rates of the first and the second components were 52.7% and 38.9%, which accounted for 91.6% of total variance. As a contributive factor influencing total loss of rapeseed mechanical harvesting, a crop moisture content factor was greater than a crop flow rate factor. The stepwise multiple regression analysis for total loss was conducted using crop moisture content factor, crop flow rate factor and coefficient. However, the model did not show any correlation among independent and dependent factors ($R^2$=0.060).

Influence of temperature, time, and moisture content on rheology of tomatoes and pepper purees

  • Adeshina Fadeyibi;Zainab Ololamide Ayinla;Rasaq A. Ajiboye
    • Food Science and Preservation
    • /
    • v.31 no.2
    • /
    • pp.199-209
    • /
    • 2024
  • This study explored how temperature, time, and moisture content affect the rheological properties (apparent viscosity, flow behavior index, and consistency coefficient) of stored tomato and pepper purees. These purees were prepared with moisture contents of 85%, 90%, and 95% (w/v) using the hot-break method and tested over 6 days at 2-day intervals and temperatures of 5℃, 10℃, and 15℃. Results displayed distinct ranges for apparent viscosity, consistency coefficient, and flow behavior indices: tomato puree (2,519.9-4,324.6 mPa·s, 258.0-550.6 mPa·Sn, 1.80-0.48) and pepper puree (2,105.6-4,562.0 mPa·s, 268.4-580.4 mPa·Sn, 0.22-0.48). The temperature and storage time had significant (p≤0.05) effects, but moisture content did not affect these properties. Flow behavior and consistency coefficients demonstrated relative variation with apparent viscosity, indicating pseudoplastic behavior. Optimal processing and storage conditions were identified within specific ranges: 13.21-14.42℃ for 2 days with 92.22-94.23% (w/v) moisture content for pepper, and 8.42-11.77℃ for 2-6 days with 85% (w/v) moisture for tomato.

Development of Soil Moisture Monitoring System for Effective Soil Moisture Measurement for Hillslope Using Flow Distribution Algorithm and TDR (산지사면의 효과적인 토양수분 측정을 위한 흐름분배 알고리즘과 TDR을 이용한 토양수분 측정망의 구성)

  • Kang, Chang-Yong;Kim, Sang-Hyun;Jung, Sung-Won;Kim, Won
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.1
    • /
    • pp.31-41
    • /
    • 2004
  • A soil moisture measuring method of hillslope for Korean watershed is developed to configure spatial-temporal distribution of soil moisture. Intensive surveying of topography had been performed to make a digital elevation model(DEM). Flow distribution algorithms were applied and a measurement system was established to maximize representative features of spatial variation. Soil moisture contribution mechanisms of rainfall-runoff process have been derived. Measurements were performed at the right side hillslope of Buprunsa located at the Sulmachun watershed. A Multiplex system has been operated and spatial-temporal soil moisture data have been acquired. Relatively high correlation relationship between flow distribution algorithm and measurement data can be found on the condition of high humidity.