• Title/Summary/Keyword: Moisture expansion

Search Result 211, Processing Time 0.03 seconds

Effects of Feed Moisture and Barrel Temperature on Physical and Pasting Properties of Cassava Starch Extrudate (수분주입량과 배럴온도에 따른 카사바 전분 압출성형물의 물리적 특성)

  • Serge, Edou Ondo;Gu, Bon-Jae;Kim, Yeon-Soo;Ryu, Gi-Hyung
    • Food Science and Preservation
    • /
    • v.18 no.3
    • /
    • pp.271-278
    • /
    • 2011
  • Considering the importance of cassava as food crops in humid tropics, the effect of feed moisture (20, 25%) and barrel temperature (110, $130^{\circ}C$) on physical properties (piece density, expansion, mechanical properties, color, water solubility index, water absorption index) and pasting properties of extruded cassava starch was investigated. The feed moisture used during extrusion processing had a significant effect on extrudates SME input, specific length and piece density at (p<0.05) while effect on cross-sectional expansion index, apparent elastic modulus and breaking strength in bending shown significantly at p<0.1. Furthermore, the interaction effect of feed moisture and barrel temperature gave a significantly affected the SME input and piece density (p<0.1), specific length (p<0.05) and on redness (p<0.01). The increase in water injection rate led to increase in piece density, apparent elastic modulus, breaking strength in bending, cold peak viscosity, breakdown and final viscosity and decrease in cross-sectional expansion index and specific length. It was found that the extrusion cooking process did not affect the value of color L, color b, water solubility index and water absorption index. Thus, the results of this study can be useful to some extent in developing extruded cassava starch as human and animal feeds.

Quality Characteristics of Yukwa Prepared with Rubus coreanus Miquel Extract Using Different Puffing Process Methods (팽화방법을 달리한 복분자 추출물 첨가 유과의 품질 특성)

  • Lee, Min-Suk;Kim, Mun-Yong;Chun, Soon-Sil
    • Korean journal of food and cookery science
    • /
    • v.24 no.3
    • /
    • pp.382-391
    • /
    • 2008
  • Yukwa samples, made with additions of 0, 10, 20, and 30% Rubus coreanus Miquel extract, were puffed by different puffing methods(convection oven, microwave oven, and fryer) and were then examined for quality characteristics such as moisture content, expansion rate, color, hardness, and sensory qualities, in order to determine the optimal ratio of Rubus coreanus Miquel extract in the formulation and the optimal expansion of Yukwa. The moisture contents of Yukwa base increased as the level of Rubus coreanus Miquel extract increased. And the Yukwa puffed by convection had higher moisture than the samples puffed by microwave oven or frying, with the exception of the sample containing 20% Rubus coreanus Miquel extract. When comparing the expansion rates of samples, no significant differences were found between the control and extract-containing samples puffed by convection, microwave, and frying methods, respectively. However, the sample puffed by frying had the highest expansion rate, whereas the convection-, microwave-puffed samples showed no significant differences. In the convection-, microwave-, and fryer-puffed samples, lightness and yellowness decreased, but redness increased, as the level of Rubus coreanus Miquel extract increased. And the sample puffed by microwave oven had greater lightness as compared to the samples puffed by convection and frying. In terms of hardness, no significant differences were found the control and extract-containing samples puffed by convection and microwave methods. However, hardness was maximal in the sample puffed by convection and lowest in the sample puffed by frying, in which it increased according to the addition of Rubus coreanus Miquel extract. In the consumer acceptance evaluations and characteristics intensity rating tests, the samples puffed using convection and microwave methods showed higher scores for the majority of evaluated characteristics as compared to the samples puffed by frying. And the samples containing Rubus coreanus Miquel extract obtained fairly good scores. In conclusion, the results indicate that additions of 10$\sim$20% Rubus coreanus Miquel extract are optimal for Yukwa that is puffed by convection and microwave methods, as this range provides good physiological properties and reasonably high overall consumer acceptability.

Physicochemical Properties of Extruded Defatted Hemp Seed and Its Energy Bar Manufacturing (압출성형 삼종실의 이화학적 특성과 에너지바의 제조)

  • Gu, Bon-Jae;Norajit, Krittika;Ryu, Gi-Hyung
    • Food Engineering Progress
    • /
    • v.14 no.2
    • /
    • pp.127-134
    • /
    • 2010
  • This study was to develop high-nutritious energy bar from extruded hemp obtained by extrusion process. Mixture of rice flour and defatted hemp was extruded at a barrel temperature of 110 and 130$^{\circ}C$, and moisture content of 20 and 25%. Properties of extrudates such as bulk density, expansion index, breaking strength, apparent elastic modulus, water absorption index (WAI), water solubility index (WSI) have been analyzed. The antioxidant potential was determined by the DPPH-radical scavenging assay. The expansion index was the highest in rice-hemp extrudate at 130$^{\circ}C$ barrel temperature and 20% moisture content among the other hemp-added extrudates. The WAI was increased with increase in moisture content, while the WSI was increased with increase in barrel temperature. The peak viscosity of rice extrudate had higher valule than those of extrudate added with hemp. DPPH scavenging activity of rice-hemp extrudate at 130$^{\circ}C$ barrel temperature and 20% moisture content showed the highest value. Sensory properties, moisture content and color were assessed for quality of energy bar. The color values of the energy bar indicated decreasing L (lightness) and b (yellowness), and increasing a (redness) after 30 days storage at ambient condition. The highest overall acceptable was the energy bar added with rice-hemp extrudate at 130$^{\circ}C$ barrel temperature and 20% moisture content.

Extrusion Puffing of Pork Meat-Defatted Soy Flour-Corn Starch Blends to Produce Snack-like Products

  • Jennifer J. Jamora;Rhee, Ki-Soon;Rhee, Khee-Choon
    • Preventive Nutrition and Food Science
    • /
    • v.6 no.3
    • /
    • pp.163-169
    • /
    • 2001
  • To produce expanded, minimally hard extrudates from blends of raw pork meat (20%), defatted soy flour (25%), and corn starch using a single-screw extruder, various combinations of feed moisture, process temperature, and screw speed were evaluated. First series of extrusion runs were conducted according to a central composite rotatable design/response surface methodology (RSM). Upon assessing the full model for each response, insignificant terms were eliminated to determine final response surface models. Screw speed within the range evaluated was found to have no significant effect on expansion ratio (ER) or shear force (SF) of extrudates. Since examinations of the response surfaces and their generated grids of predicted values indicated that maximum ER and minimum SF were likely to be attained with a moisture-temperature combination outside the RSM experimental range, the second series of extrusion runs were conducted with several selected combinations of moisture and temperature to determine a practical optimum extrusion condition. The combination of 22.78% feed moisture, 16$0^{\circ}C$ process temperature, and 170 rpm screw speed was chosen as such a condition, and used in the final extrusion. The final product required less force to break than did commercial pretzel sticks.

  • PDF

Comparison of Dynamic Sorption and Hygroexpansion of Wood by Different Cyclic Hygrothermal Changing Effects

  • Yang, Tiantian;Ma, Erni
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.191-203
    • /
    • 2016
  • To investigate the dynamic sorptive and hygroexpansive behaviors of wood by different cyclic hygrothermal changing effects, poplar (populus euramericana Cv.) specimens, were exposed to dynamic sorption processes where relative humidity (RH) and temperature changed simultaneously in sinusoidal waves at 75-45% and $5-35^{\circ}C$ (condition A) and where RH changed sinusoidally at 75-45% but temperature was controlled at $20^{\circ}C$ (condition B), both for three cyclic periods of 1, 6, and 24 h. Moisture and dimensional changes measured during the cycling gave the following results: Moisture and transverse dimensional changes were generally sinusoidal. Moisture and dimensional amplitude increased with increasing cyclic period but all were lower for thicker specimens. The amplitude ratio of condition A to condition B ranged from 1.0 to 1.6 with the maximum value of 1.57 occurring at the shortest cyclic period, not as much as expected. T/R increased as cyclic period increased or specimen thickness decreased. T/R from condition B was weaker than that from condition A. Sorption and swelling hysteresis existed in both conditions. Sorption hysteresis was negatively related to cyclic period but in positive correlation with specimen thickness. Sorption hysteresis was found more obvious in condition B, while moisture sorption coefficient and humidity expansion coefficient showed the opposite results.

Effects of Moisture Content and Particle Size of Rice Flour on the Physical Properties of the Extrudate (쌀가루의 수분함량과 입자크기에 따른 Extrudate 의 물성학적 성질)

  • Ryu, Gi-Hyung;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.463-469
    • /
    • 1988
  • The effects of moisture content and particle size of rice flour on the physical properties of the extrudate were examined by using a autogeneous single screw extruder. The moisture contents tested were in the range of 17-28% and the particle sizes were 18-60mesh and 60-120mesh. Samples were taken at different temperatures from the start-up period to the steady state operation. The expansion ratio increased and bulk density decreased as the moisture content and particle size of the flour decreased. The cutting force decreased and the air cell size became uniform as the moisture content and particle size of the flour decreased. As the moisture content increased, the yellowness of the extrudate powder decreased, while the lightness increased, the apparent viscosity increased and the water soluble index decreased. Gelatinization and partial dextrinization were apparent during the extrusion process, and the degree of dextrinization was appeared to be influenced by the levels of moisture content and particle size of rice flour.

  • PDF

Analysis of Traditional Process for Yukwa Making, a Korean Puffed Rice Snack(II) Pelleting, Drying, Conditioning and Additives (전통 유과가공공정의 분석(II): 반데기성형, 건조, 수분조절 및 부재료의 첨가)

  • Kang, Sun-Hee;Ryu, Gi-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.818-823
    • /
    • 2002
  • Effects of pelleting, drying, conditioning, and additives on the characteristics of Yukwa (fried pellet) were determined. RVA maximum paste viscosity of Bandegi (waxy rice pellet) was the highest after 2 days of moisture conditioning process, and decreased 2 days later. Air bubbles in Bandegi were distributed uniformly but were not significantly affected by conditioning time. For higher expansion and softer texture of Yukwa, the optimum moisture content of dried and conditioned Bandegi was $14{\sim}17%$. The addition of soymilk and 25% alcohol (Soju) as additives was also effective for achieving higher expansion and soft texture of Yukwa, respectively. Larger air cells were distributed in the center and smaller ones on the edge of Yukwa.

Quality Characteristics of Barley Leaves Tea White Bread with Hemicellulase (헤미셀룰라아제를 첨가한 보리잎차 식빵의 품질 특성)

  • Yeom, Kyung-Hun;Kim, Mun-Yong;Chun, Soon-Sil
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.2
    • /
    • pp.178-185
    • /
    • 2010
  • Barley leaves tea white bread were prepared by the addition of 0.005, 0.010, 0.015, and 0.020% hemicellulase to flour of the basic formulation. The experiments and control were then compared in terms of quality characteristics, including pH, total titratable acidity, fermentation power of dough expansion, specific volume, baking loss, moisture content, color, textural characteristics, internal surface appearances, and sensory qualities in order to determine the optimal ratio of hemicellulase in the formulation. There were no significant differences in pH and total titratable acidity of dough and bread among the experiments. Fermentation power of dough expansion were increased as incubation time increased. Bread made by the addition of hemicellulase had significantly higher specific volume than the control group. However, lightness and yellowness showed the reverse effect. Greenness was not significantly different among the samples. Baking loss was the highest at the 0.020% addition level, and moisture content was maximal with the 0.010% addition, while the lowest in the control bread samples. As hemicellulase contents increased, harness and fracturability decreased. Resilience was maximal with the 0.015% addition, and was minimal in the 0.005% group. In the sensory evaluation, color, flavor, softness, overall acceptability, barley leaves flavor, delicious taste, astringency, bitterness, and off-flavor were not significantly different among the samples. In coclusion, the results indicate that adding 0.010% hemicellulase in barley leaves tea white bread is optimal for quality and provides a product with reasonably high overall acceptability.

Effects of Branched Dextrin on the Quality Characteristics of Frozen Soft Roll Dough and its Bread during Storage (분지 덱스트린 첨가가 냉동 소프트롤 반죽 및 빵의 저장 중 품질 특성에 미치는 영향)

  • Park, Jin-Hee;Lim, Chun-Son;Kim, Il-Hwan;Kim, Mun-Yong
    • Korean journal of food and cookery science
    • /
    • v.27 no.5
    • /
    • pp.507-522
    • /
    • 2011
  • In this study, samples of wheat flour and dough were prepared by adding of 1, 3, or 5% branched dextrin, which is produced from the amylopectin of waxy corn starch using a cyclization reaction with a branching enzyme. The samples were then evaluated qualitatively in terms of farinogram, viscogram, and extensogram characteristics. The fermentation power of dough expansion, extensogram characteristics, specific volume, baking loss, external/internal surface appearance, and sensory qualities were also examined after 4 weeks of storage at -20$^{\circ}C$ to determine the effect on freeze-thaw stability and quality improvement of branched dextrins in the soft roll bread formulation. Furthermore, the samples along with a control were compared regarding their quality characteristics, including changes in moisture content, water activity, color, and textural characteristics during a storage period of 4 days at 20$^{\circ}C$ to determine the effect on preventing retrogradation of the branched dextrin. As the branched dextrin content increased, area and extensibility increased, whereas water absorption, fermentation power of dough expansion, resistance/extensibility ratio, baking loss, and brownness of the crust decreased. However, the control group presented significantly higher peak viscosity, resistance, specific volume, taste, overall acceptability, moisture content, water activity, springiness, cohesiveness, and resilience values than those of the branched dextrin samples, whereas lightness, hardness, and chewiness showed the reverse effect. As the storage period increased, lightness, hardness, and chewiness increased, whereas cohesiveness decreased. In conclusion, the results indicate that adding 1~3% branched dextrin into a soft roll bread formulation from frozen dough had no positive effect on freeze-thaw stability or preventing retrogradation but may provide good nutritional properties.

Effects of Moisture Content and Screw Speed on Physical Properties of Extruded Soy Protein Isolate (수분함량과 스크루 회전속도에 따른 압출성형 분리대두단백의 물리적 특성)

  • Gu, Bon Yeob;Ryu, Gi-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.6
    • /
    • pp.751-758
    • /
    • 2017
  • The objective of this study was to determine the effects of moisture content and screw speed on the physical properties of extruded soy protein isolate (SPI). Expansion index, water absorption index, texture, integrity index, color, and nitrogen solubility index of extruded SPI were analyzed to determine the relationship with extrusion conditions. Extrusion conditions were moisture content (40, 50, and 60%) at a fixed die temperature ($140^{\circ}C$) and screw speed (250 rpm). The other extrusion conditions were screw speed (150, 250, and 330 rpm) at a fixed moisture content (55%) and die temperature ($140^{\circ}C$). Specific mechanical energy (SME) input decreased as moisture content increased from 40 to 60%. However, SME input increased as screw speed increased from 150 to 330 rpm. Expansion ratio and piece density decreased as moisture content and screw speed increased, and specific length increased as moisture content and screw speed increased. The extruded SPI at 40% moisture content had higher water absorption index, texture, and color differences than those of the extruded SPI at other moisture contents (50 and 60%). however, the extruded SPI at 40% moisture content had lower integrity index and cutting strength than those of the extruded SPI at other moisture contents (50 and 60%). In conclusion, the physical properties of extruded SPI were more affected by moisture content than screw speed.