• Title/Summary/Keyword: Moisture diffusion

Search Result 203, Processing Time 0.023 seconds

Hygrothermoelasticity in a porous cylinder under nonlinear coupling between heat and moisture

  • Ishihara, Masayuki;Yoshida, Taku;Ootao, Yoshihiro;Kameo, Yoshitaka
    • Structural Engineering and Mechanics
    • /
    • v.75 no.1
    • /
    • pp.59-69
    • /
    • 2020
  • The purpose of this study is to develop practical tools for the mechanical design of cylindrical porous media subjected to a broad gap in a hygrothermal environment. The planar axisymmetrical and transient hygrothermoelastic field in a porous hollow cylinder that is exposed to a broad gap of temperature and dissolved moisture content and is free from mechanical constraint on all surfaces is investigated considering the nonlinear coupling between heat and binary moisture and the diffusive properties of both phases of moisture. The system of hygrothermal governing equations is derived for the cylindrical case and solved to illustrate the distributions of hygrothermal-field quantities and the effect of diffusive properties on the distributions. The distribution of the resulting stress is theoretically analyzed based on the fundamental equations for hygrothermoelasticity. The safety hazard because of the analysis disregarding the nonlinear coupling underestimating the stress is illustrated. By comparing the cylinder with an infinitesimal curvature with the straight strip, the significance to consider the existence of curvature, even if it is infinitesimally small, is demonstrated qualitatively and quantitatively. Moreover, by investigating the bending moment, the necessities to consider an actual finite curvature and to perform the transient analysis are illustrated.

Failure Mechanism of Bendable Embedded Electronic Module Under Various Environment Conditions (Bendable 임베디드 전자모듈의 손상 메커니즘)

  • Jo, Yun-Seong;Kim, A Young;Hong, Won Sik
    • Journal of Welding and Joining
    • /
    • v.31 no.5
    • /
    • pp.59-63
    • /
    • 2013
  • A bendable electronic module has been developed for a mobile application by using a low-cost roll-to-roll manufacturing process. In flexible embedded electronic module, a thin silicon chip was embedded in a polymer-based encapsulating adhesive between flexible copper clad polyimide layers. To confirm reliability and durability of prototype bendable module, the following tests were conducted: Moisture sensitivity level, thermal shock test, high temperature & high humidity storage test, and pressure cooker tester. Those experiments to induce failure of the module due to temperature variations and moisture are the experiment to verify the reliability. Failure criterion was 20% increase in bump resistance from the initial value. The mechanism of the increase of the bump resistance was analyzed by using non-destructive X-ray analysis and scanning acoustic microscopy. During the pressure cooker test (PCT), delamination occurred at the various interfaces of the bendable embedded modules. To investigate the failure mechanism, moisture diffusion analysis was conducted to the pressure cooker's test. The hygroscopic characteristics of the encapsulating polymeric materials were experimentally determined. Analysis results have shown moisture saturation process of flexible module under high temperature/high humidity and high atmosphere conditions. Based on these results, stress factor and failure mechanism/mode of bendable embedded electronic module were obtained.

Study on the Physical and Thermal Properties of Rice Kernels - Thermal Properties - (벼의 물리적(物理的) 및 열적(熱的) 특성(特性)에 관(関)한 연구(硏究) -열적(熱的) 특성(特性)에 관(関)하여-)

  • Koh, Hak Kyun;Noh, Sang Ha;Chung, Jong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.9 no.2
    • /
    • pp.89-96
    • /
    • 1984
  • This study was intended to search the thermal properties of rice which are necessary in preventing qualitative and quantitative losses in the drying and milling processes. First, the coefficient of cubical thermal expansion of brown rice was measured, which is required for analyzing the internal stress of rice, and then theoretical thermal and moisture stresses were calculated. The results are summarized as follows: 1. The coefficient of cubical thermal expansion of brown rice was about $2.81{\times}10^{-4}/^{\circ}C$ in the temperature range of $10^{\circ}C-60^{\circ}C$. 2. When the shape of brown rice was assumed to be a sphere or a cylinder, maximum thermal stress due to temperature change of $20^{\circ}C-60^{\circ}C$ was in the range of $25-100kg/cm^2$. And maximum moisture stress was in the range of $450-650kg/cm^2$ when the drying temperature was $35^{\circ}C$, initial and final moisture contents of brown rice were 20% and 14% (w.b.), and the moisture diffusion coefficient was assumed to be $6.79{\times}10^{-4}cm^2/hr$. 3. Consequently, it was concluded that crack formation in a rice kernel is mainly caused by moisture stress.

  • PDF

Moisture Management Properties and Antibacterial Activity·Deodorization of Chitosan Microcapsule Finished Fabric

  • Ryu, Su Jin;Bae, Hyun Sook
    • Fashion & Textile Research Journal
    • /
    • v.23 no.6
    • /
    • pp.836-843
    • /
    • 2021
  • Recently, with an increase of interest in hygiene of textile products, research related to finishing technology to impart various functionalities, such as antibacterial and deodorizing properties, has also required. Therefore, in this study, the improvement of comfort was examined by analyzing the change of moisture characteristics and antibacterial and deodorizing properties of underwear fabric by chitosan microcapsule(CH-M) finishing. The results revealed that moisture absorption time of the fabric shortened, diffusion rate increased, while absorption rate slightly increased because of microcapsule finishing. In addition, the one-way transfer capacity of the microcapsule finished fabric was 17.69, which improved moisture transfer to one side, while OMMC showed the values of 0.32 and 0.37 for untreated and finished fabrics, respectively, which slightly increased after finishing. In the case of untreated fabric, antibacterial activity was 89.0% against Staphylococcus aureus and 70.3% against Klebsiella pneumoniae; however, both strains showed 99.9% antibacterial activity by CH-M finishing. An excellent bacterial reduction rate was also observed. In the case of the CH-M finished fabric, there was a deodorization effect exceeding 99% up to 120 minutes, and it showed an excellent deodorization effect of more than 99% even after 10 repeated washings.

Humidity Dependence Removal Technology in Oxide Semiconductor Gas Sensors (산화물 반도체 가스 센서의 습도 의존성 제거 기술)

  • Jiho Park;Ji-Wook Yoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.347-357
    • /
    • 2024
  • Oxide semiconductor gas sensors are widely used for detecting toxic, explosive, and flammable gases due to their simple structure, cost-effectiveness, and potential integration into compact devices. However, their reliable gas detection is hindered by a longstanding issue known as humidity dependence, wherein the sensor resistance and gas response change significantly in the presence of moisture. This problem has persisted since the inception of oxide semiconductor gas sensors in the 1960s. This paper explores the root causes of humidity dependence in oxide semiconductor gas sensors and presents strategies to address this challenge. Mitigation strategies include functionalizing the gas-sensing material with noble metal/transition metal oxides and rare-earth/rare-earth oxides, as well as implementing a moisture barrier layer to prevent moisture diffusion into the gas-sensing film. Developing oxide semiconductor gas sensors immune to humidity dependence is expected to yield substantial socioeconomic benefits by enabling medical diagnosis, food quality assessment, environmental monitoring, and sensor network establishment.

Distribution Model Based on Computer Simulation for Internal Temperature and Moisture Content in Press Drying of Tree Disks (원판(圓板)의 열판건조(熱板乾燥)에서 컴퓨터 시뮬레이션에 의한 내부온도(內部溫度)와 함수율(含水率) 분포모형(分布模型))

  • Yeo, Hwan-Myeong;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.61-70
    • /
    • 1994
  • This study was executed to find the applicability of press drying of tree disk by investigating the shrinkage and drying defect and to form appropriate model by comparing the actual moisture content(MC) and internal temperature in respect of drying time with calculated values based computer simulation to which was applied finite difference method. In press drying disk, heating period, constant drying rate period maintained plateau temperature at 100$^{\circ}C$ and falling drying rate period were significantly distinguished. Actual MC and internal temperature were analogous to those calculated at comparing points. Heat transfer model formed by Fourier's law using specific heat of moist wood and conduction coefficient considering fractional volume of each element of wood cell wall, bound water, free water and air showed applicability as basic data to developing heat expansion, shrinkage and drying stress during press drying. Also mass transfer model formed by Fick's diffusion law using water vapor diffusion coefficient showed applicability. Longitudinal shrinkage was developed by pressure of hot press and tangential shrinkage was restrained by hygrothermal recovery. The heart check, surface check and ring failure were occurred differently in species, but V-shaped crack didn't develop.

  • PDF

Studies on the Extraction Rate of Oil from Sardine, Sardinops melanosticta (정어리 지질의 추출속도에 관한 연구)

  • YANG Hyun-Seok;LEE Keun-Tai;BYUN Dae-Seok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.1
    • /
    • pp.40-46
    • /
    • 1984
  • The extraction ratio of oil using solvent from the muscle of sardine, Sardinops melanosticta, was studied. The results were critically evaluated in the light of the theory of oil diffusion in a porous solid model. In addition the effect of temperature and moisture on the extraction rate was examined. Sardine muscle was prepared in a manner to meet the conditions required by the diffusion theory from Fick's law. The results of the model were well coincidenced to the theory derived from Fick's law. Diffusion constants at the direction to muscle fiber($D_1$) and at direction perpendicular to fiber($D_2=D_3$) when extracted at $45^{\circ}C$ were $8.16{\times}10^{-8}cm^2/sec\;and\;4.12{\times}10^{-8}cm^2/sec$, respectivly. The extraction rate was linearly propotional to absolute temperature(T) by eleventh power under the constant condition of moisture contents and muscle size. A comparison of the experiments with the highest($74.22\%$) and the lowest ($32.48\%$) moisture indicated that difference of $1\%$ in moisture contents caused to change the slope(K) of the extraction curve $0.53{\times}10^{-6}sec^{-1}$ approximately.

  • PDF

A study of natural air drying of rough rice leading to optimization -Part I: Minimum airflow requirement and required drying time (시뮬레이션에 의한 상온통풍건조방법(常溫痛風乾燥方法)의 적정화(適正化)에 관한 연구(硏究) -Part I : 최소소요송풍량(最少所要送風量)과 소요건조시간(所要乾燥時間)의 결정(決定))

  • Han, Young Jo;Koh, Hak Kyun;Chung, Chang Joo
    • Journal of Biosystems Engineering
    • /
    • v.6 no.1
    • /
    • pp.83-92
    • /
    • 1981
  • A simulation model of natural air drying to predict the changes of the grain moisture content and dry matter loss of rough rice was developed by the application of mass diffusion theory. A series of simulated drying tests was conducted using the 10 year weather data (1970-1979) obtained from Cheongju, Chuncheon, Daegu, Daejeon, Jeonju, Jinju and Suweon in Korea. System performance factors treated in this study were initial moisture content, airflow rate, bin diameter and grain depth. The results obtained in this study are summarized as follows: 1) The simulation model used in this study was validated with actual experimental results and was applicable to the natural air drying of rough rice. 2) Minimum airflow rates for safe drying were determined for different initial moisture contents and regional weather conditions as shown in Table 6. 3) Equations for estimating drying time and dry matter loss in terms of airflow rate and initial moisture content were derived in the form of an exponential function. 4) These results show that the natural air drying system of rough rice is feasible in Korea even for the poorest drying condition.

  • PDF

Thin Layer Drying Model of Green Rice (청립의 박층건조모델)

  • Han, J.W.;Keum, D.H.;Kim, H.;Lee, S.E.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.5 s.118
    • /
    • pp.410-415
    • /
    • 2006
  • This study was performed to develop thin layer drying equations for green rice. Thin layer drying tests of green rice were conducted at three temperature levels of 30, 40, $50^{\circ}C$ and two relative humidity levels of 30, 50% respectively. The measured moisture ratio were fitted to the selected four drying models (Page, Thompson, Simplified diffusion and Lewis model) using stepwise multiple regression analysis. The overall drying rate increased as the drying air temperature and as relative humidity was increased, but the effect of temperature increase was dominant. Half response time (Moisture ratio=0.5) of drying was affected by both drying temperature and relative humidity Drying rate was mainly affected by relative humidity at drying temperature of $50^{\circ}C$. The results of comparing coefficients of determination and root mean square error of moisture ratio for four drying models showed the Page model was found to ft adequately to all drying test data.

Low Temperature Thin Layer Drying Model of Rough Rice (벼의 저온 박층건조모델)

  • Kim H.;Keum D. H.;Kim O. W.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.6 s.107
    • /
    • pp.495-500
    • /
    • 2004
  • This study was performed to develop thin layer drying equations for low temperature. Thin layer drying tests of short grain rough rice were conducted at three low temperature levels of 15, 25, $35^{\circ}C$ and two relative humidity levels of 30, $50\%$, respectively. The measured moisture ratios were fitted to the selected four drying models (Page, Thompson, Simplified diffusion and Lewis model) using stepwise multiple regression analysis. The overall drying rate increased as the drying air temperature was increased and as relative humidity was decreased, but the effect of temperature increase was dominant. Half response time (Moisture ratio=0.5) of drying was affected by both drying temperature and relative humidity at drying temperature of below $25^{\circ}C$, but at $35^{\circ}C$ was mainly affected by drying temperature. The results of comparing coefficients of determination and root mean square error of moisture ratio for low drying models showed that Page model was found to fit adequately to all drying test data.