• Title/Summary/Keyword: Moisture damaged buildings

Search Result 3, Processing Time 0.023 seconds

A comparison of the forces on dome and prism for straight and tornadic wind using CFD model

  • Yousef, Majdi A.A.;Selvam, Panneer R.;Prakash, Jai
    • Wind and Structures
    • /
    • v.26 no.6
    • /
    • pp.369-382
    • /
    • 2018
  • Tornadoes are vertical swirling air formed because of the existence of layers of air with contrasting features of temperature, wind flow, moisture, and density. Tornadoes induce completely different wind forces than a straight-line (SL) wind. A suitably designed building for an SL wind may fail when exposed to a tornado-wind of the same wind speed. It is necessary to design buildings that are more resistant to tornadoes. In tornado-damaged areas, dome buildings seem to have less damage. As a dome structure is naturally wind resistant, domes have been used in back yards, as single family homes, as in-law quarters, man caves, game rooms, storm shelters, etc. However, little attention has been paid to the tornadic wind interactions with dome buildings. In this work, the tornado forces on a dome are computed using Computational Fluid Dynamics (CFD) for tornadic and SL wind. Then, the interaction of a tornado with a dome and a prism building are compared and analyzed. This work describes the results of the tornado wind effect on dome and prism buildings. The conclusions drawn from this study are illustrated in visualizations. The tornado force coefficients on a dome building are larger than SL wind forces, about 120% more in x- and y-directions and 280% more in z-direction. The tornado maximum pressure coefficients are also higher than SL wind by 150%. The tornado force coefficients on the prism are larger than the forces on the dome, about 100% more in x- and y-directions, and about 180% more in z-direction. The tornado maximum pressure coefficients on prism also are greater those on dome by 150% more. Hence, a dome building has less tornadic load than a prism because of its aerodynamic shape.

A Study on the Inspection of Termite-damaged Wooden Buildings through the Use of Detection Dogs and an Analysis of Environmental Factors (탐지견 반응 및 환경 인자 분석을 통한 목조 건축물의 흰개미 피해 조사)

  • Kim, Young Hee;Lim, Bo A;Lee, Jeung Min;Jo, Chang Wook;Kim, Soo Ji;Park, Ji Hee
    • Journal of Conservation Science
    • /
    • v.35 no.6
    • /
    • pp.641-651
    • /
    • 2019
  • This study investigates three buildings arranged alongside at the same level, namely, the Josadang, the Buljojeon, and the Palsangjeon. Their backside is blocked by an embankment with an environmental condition unsuitable for wooden buildings. The pillar behind the Josadang had termite damage for which termite damage and environmental investigations had been conducted for the past four years. The termite damage was monitored four times using the termite detection dogs, and the environmental factors were surveyed 27 times, except during the winter season. As a result, the locations of the columns with a high frequency of responses from the termite detection dogs were found and damage was confirmed. According to the surface moisture content investigations, the surface moisture content was highest in the Josadang and lowest in the Buljojeon. After a statistical analysis, the mean, the median, and the mode values were compared. The difference between the mean and the median was found to be less, however, the mode varied significantly. The mode values of the Josadang and the Palsangjeon were 14.5% and 10.8%, respectively, higher than the 6.1% mode value of the Buljojeon. It was concluded that the temperature and the water content affected the termite damage, which increases if the temperature and the water content remain constant owing to the environmental factors.

Moist and Mold Exposure is Associated With High Prevalence of Neurological Symptoms and MCS in a Finnish Hospital Workers Cohort

  • Hyvonen, Saija;Lohi, Jouni;Tuuminen, Tamara
    • Safety and Health at Work
    • /
    • v.11 no.2
    • /
    • pp.173-177
    • /
    • 2020
  • Background: Indoor air dampness microbiota (DM) is a big health hazard. Sufficient evidence exists that exposure to DM causes new asthma or exacerbation, dyspnea, infections of upper airways and allergic alveolitis. Less convincing evidence has yet been published for extrapulmonary manifestations of dampness and mold hypersensitivity syndrome). Methods: We investigated the prevalence of extrapulmonary in addition to respiratory symptoms with a questionnaire in a cohort of nurses and midwives (n = 90) exposed to DM in a Helsinki Obstetric Hospital. The corresponding prevalence was compared with an unexposed cohort (n = 45). Particular interest was put on neurological symptoms and multiple chemical sensitivity. Results: The results show that respiratory symptoms were more common among participants of the study vs. control cohort, that is, 80 vs 29%, respectively (risk ratio [RR]: 2.56, p < 0.001). Symptoms of the central or peripheral nervous system were also more common in study vs. control cohort: 81 vs 11% (RR: 6.63, p < 0.001). Fatigue was reported in 77 vs. 24%, (RR: 3.05, p < 0.001) and multiple chemical sensitivity in 40 vs. 9%, (RR: 3.44, p = 0.01), the so-called "brain fog", was prevalent in 62 vs 11% (RR: 4.94, p < 0.001), arrhythmias were reported in 57 vs. 2.4% (RR: 19.75, p < 0.001) and musculoskeletal pain in 51 vs 22% (RR: 2.02, p = 0.02) among participants of the study vs. control cohort, respectively. Conclusion: The results indicate that the exposure to DM is associated with a plethora of extrapulmonary symptoms. Presented data corroborate our recent reports on the health effects of moist and mold exposure in a workplace.