• Title/Summary/Keyword: Moisture absorption

Search Result 676, Processing Time 0.022 seconds

Characteristics and Change of Electrode Surface in Moisture Absorption on the Series Gap Surge Arrester (직렬 갭 피뢰기의 흡습시 전극표면의 변화 및 특성)

  • Cho, Han-Gu;Kim, Hyang-Suk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1172-1175
    • /
    • 2003
  • The characteristics and change of electrode surface about Gap type surge arrester for protect DC subway rail were investigated with moisture absorption. Compared that tested about DC/AC discharge commencement voltage, residual voltage, Impulse, square wave impulse for DC rail surge arrester about Gap type surge arrester of moisture absorption state. The AC discharge commencement voltage acted greatly effect of moisture absorption than the DC discharge commencement voltage test.

  • PDF

The Effect of Geometrical Structure on the Moisture Transport Properties of Nonwoven Batting Materials (부직포 충전재의 구조적 특성이 수분전달 특성에 미치는 영향-단층구조와 이층구조 부직포의 비교-)

  • 김희숙;나미희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.24 no.6
    • /
    • pp.810-818
    • /
    • 2000
  • The purpose of this study was to analyze the effect of geometrical structure on the moisture transport properties of nonwoven batting materials. Two types of nonwovens were used such as single and double layered nonwovens. Steady and dynamic state water vapor transport properties were measured by absorption, evaporation and cobaltous chloride method respectively. The results of this study were as follows: 1) Geometrical structure affected water vapor evaporation, but there were no differences between single and double layered nonwovens in moisture absorption. Thickness and air permeability were influencing factor on water vapor transport rate. 2) Directionality of double layered nonwoven was observed both in steady and dynamic state moisture transport. There were differences between upper and lower layer of double layered nonwoven both in moisture absorption rate and color change by cobaltous chloride method. 3) In dynamic state of water vapor transport rate, single layered nonwoven reached more rapidly at the established relative humidity. It was confirmed that geometrical structure affected water vapor evaporation and hydrophilicity of fiber affected moisture absorption because there were much more water vapor transport rate by evaporation than absorption within the same period of time.

  • PDF

Hygrothermal and Impact Damage Evaluation of CFRP Hat shaped sectional members with Stacking Angle Variation (적층각도 변화를 갖는 CFRP 모자형 단면부재의 열습 및 충격손상 평가)

  • Yang, Yong-Jun;Sim, Jae-Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.782-789
    • /
    • 2010
  • It is important to satisfy the requirements and standards for the protections of passengers in a car accident. There are lots of studies on the crushing energy absorption of a structure member in automobiles. In this paper, we have studied to investigate collapse characteristics and moisture absorption movements of CFRP( carbon fiber reinforced plastics) structure members when CFRP laminates are under the hygrothermal environment. In particular, the absorbed energy, mean collapse load and deformation mode were analyzed for CFRP members which absorbed most of the collision energy. Also, variation of stacking angle is important to increase the energy absorption capability. The purpose of this study is to evaluate the strength reduction and moisture absorption behavior of CFRP hat shaped member. Therefore we have made a impact collapse experiment to research into the difference of absorbed energy and deformation mode between moisture absorbed specimen and non-moisture absorbed. As a result, the effect of moisture absorption and impact loads of approximately 50% reduction in strength are shown.

Liquid Moisture Management and Surface Properties of the Fabric in Transient Condition (작업복 소재 직물의 액상 수분 전달 특성 및 표면특성 연구)

  • 유신정
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.1
    • /
    • pp.61-70
    • /
    • 2001
  • As important factors determining human sensorial comfort, liquid moisture management and surface properties of heat resistant workwear materials were examined. To figure out liquid moisture management properties of the test materials, absorption capacity, rate of absorption, and evaporation properties were assessed. A modified GATS(Gravimetric Absorbency Testing System) was used to measure the liquid moisture accumulation associated with the wicking of liquid moisture from sweating skin. The GATS procedure measures demand wettability of materials to take up liquid in a direction perpendicular to the fabric surface and it was modified to incorporate a special test cell and cover to assess absorption behavior in the presence of evaporation. Fabric stiffness, smoothness, number and the length of surface fibers, and an estimate of the contact area between the skin and fabric surface were measured to characterize the mechanical and surface properties of the test materials. Also an estimate of the force with which a fabric clings to moist skin was made using as wet-cling index.

  • PDF

Strength Evaluation on CFRP Hat-shaped Sectional Members According to Changes in Temperature Under Hygrothermal Environment (온도 변화에 따른 열습 환경하에서의 CFRP 모자형 단면부재의 강도평가)

  • Yang, Yongjun;Kook, Hyun;Yang, Inyoung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.892-896
    • /
    • 2012
  • CFRP composites with light weight, high strength, and high elasticity by comparing with metal are widely used rather than previous steel plates. However, CFRP composite material has the weakness at hydrothermal and collapsed impact environment. Especially, moisture absorption into composite material can change molecule arrangement and chemical properties under hydrothermal environment. And static collapse experiment is the research in the differences of absorbed energy and deformation mode between moisture and non-moisture absorbed specimens. This study is compared and analyzed on the progress change of moisture absorption ratio after setting up the temperatures of 60 and 80 degrees C in order to comprehend how the change in the temperature influences on moisture absorption status inside CFRP composite materials.

Moisture Absorption of Granular Fertilizer and Its Distribution Characteristic in a Pneumatic Applicator (입제비료의 흡습과 송풍식 살포기에서의 비산특성)

  • Hong, J.H.;Kim, Y.J.;Rhee, J.Y.;Chung, J.H.;Kim, J.Y.;Kim, J.H.;Kim, T.W.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.5 s.118
    • /
    • pp.389-394
    • /
    • 2006
  • The characteristic of moisture absorption of granular fertilizer was measured at several different opening sizes on the top cover of a hopper in a humid weather. The size of the opening was to represent the degree of looseness of sealing of the top cover of the hopper. The application distribution was characterized by the scattering distance of granular fertilizer with different degree of moisture absorption in a pneumatic granular fertilizer applicator. The moisture absorption rates were 12.92 and 12.26 mg of moisture an hour for one gram of each granular fertilizers of NPK 22-12-12 and 21-17-17, respectively. The moisture absorption increased linearly as the opening size increased. The median value of the scattering distance distribution decreased with time of absorption, however, it decreased very slowly after three hours of absorption.

Analysis of Time-Dependent Deformation of CFRP Considering the Anisotropy of Moisture Diffusion

  • Arao, Yoshihiko;Koyanagi, Jun;Hatta, Hiroshi;Kawada, Hiroyuki
    • Advanced Composite Materials
    • /
    • v.17 no.4
    • /
    • pp.359-372
    • /
    • 2008
  • The moisture absorption behavior of carbon fiber-reinforced plastic (CFRP) and its effect on dimensional stability were examined. Moisture diffusivity in CFRP was determined by measuring a specimen's weight during the moisture absorption test. Three types of CFRP specimens were prepared: a unidirectionally reinforced laminate, a quasi-isotropic laminate and woven fabric. Each CFRP was processed into two geometries - a thin plate for determination of diffusivity and a rod with a square cross-section for the discussion of two-dimensional diffusion behavior. By solving Fick's law expanded to 3 dimensions, the diffusivities in the three orthogonal directions were obtained and analyzed in terms of the anisotropy of CFRP moisture diffusion. Coefficients of moisture expansion (CMEs) were also obtained from specimen deformation caused by moisture absorption. During moisture absorption, the specimen surfaces showed larger deformation near the edges due to the distribution of moisture contents. This deformation was reasonably predicted by the finite element analysis using experimentally determined diffusivities and CMEs. For unidirectional CFRP, the effect of the fiber alignment on CME was analyzed by micromechanical finite element analysis (FEA) and discussed.

Studies on Absorption Ratio of Tobacco for Optimum Moisture Control (적정수분 관리를 위한 담배흡습속도에 관한 연구)

  • 정한주;김기환;민영근;김병구;양광규;오인혁
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.15 no.1
    • /
    • pp.90-97
    • /
    • 1993
  • 1. Average moisture content of tobacco in BIB silo was about 19: 1% until 4hours conditioned time, and then moisture variation of tobacco after 2hr conditioned was very small. 2. Application of mathematical model for ordering system. 1) The constant K in the exponential equation varies inversely with both relative humidity and equilibrium moisture. 2) Time needed to order blending tobacco leaves with standard moisture from bulking and blending silo was 4 hours. 3) Reconstituted tobacco sheet had higher moisture absorption ratio than Oriental and Burley tobacco. 4) For minimize of conditioning time in BIB silo, the values of K and Mo given in this study can be used in equation(1) to calculate moisture absorption ratio and optimum conditioning time. 3. Average moisture content and water activity of conditioned tobacco for 4 hours in BIB silo was about 20% and 0.65. In this condition. microbial life will inhibite 4. Physical properties of conditioned tobacco in bulking and blending silo for 4hours was virtually no change.

  • PDF

Moisture Absorption Properties of Liquid Type Epoxy Encapsulant with Nano-size Silica for Semiconductor Packaging Materials (나노크기 실리카를 사용한 반도체용 액상 에폭시 수지 성형재료의 흡습성질)

  • Kim, Whan-Gun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.33-39
    • /
    • 2010
  • The moisture absorption properties such as diffusion coefficient and moisture content ratio of liquid type epoxy resin systems with the filler were investigated. Bisphenol A type and Bisphenol F type epoxy resin, Kayahard MCD as hardener and 2-methylimidazole as catalyst were used in these epoxy resin systems. The nano-sized spherical type fused silica as filler were used in order to study the moisture absorption properties of these liquid type epoxy encapsulant according to the change of filler size. The temperature of glass transition (Tg) of these epoxy resin systems was measured using Dynamic Scanning Calorimeter (DSC), and the moisture absorption properties of these epoxy resin systems according to the change of time were observed at $85^{\circ}C$ and 85% relative humidity condition using a thermo-hygrostat. The diffusion coefficients in these systems were calculated in terms of modified Crank equation based on Ficks' law. An increase of Tg and diffusion coefficient with filler size in these systems can be observed, which are attributed to the increase of free volume with Tg. The change of maximum moisture absorption ratio according to the filler size and filler content cannot be observed; however, the diffusion coefficients of these systems decreased with filler content. The diffusion via free volume is dominant in the epoxy resin systems with low nano-sized filler content; however, the diffusion with the interaction of absorption according the increase of the filler surface area is dominant in the liquid type epoxy encapsulant with high nano-sized filler content.

Insulation Properties of Epoxy Resin to Elastomer Contents for Power Electrical Machine according to Moisture Absorption (전력기기용 탄성형 에폭시의 흡습에 따른 절연 특성)

  • Kim, Seok-Jae;Park, Seong-Hui;Jeon, Young-Sik;Kang, Seong-Hwa;Park, Dae-Hee;Lim, Kee-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.297-300
    • /
    • 2004
  • In this paper, we investigated insulation property of epoxy resin which includes elastomers to improve mechanical property, as varied to additive elastomer contents and to moisture absorption. There are four samples with 5[phr], 10[phr], 15[phr] and 20[phr]. we experimented to acquire insulation property(absorption rate, dissolution rate, apparent rate) and electrical property(perittivity, $tan\delta$, BDV) during respectively the time such as 6[h], 12[h], 18[h], 24[h] for moisture absorption. According to the experimental results, it is appeared that when the additive elastomer contents are increasing or when specimens remain more moisture, absorption rate, dissolution rate, permittivity and $tan\delta$ are slightly increasing but apparent rate and BDV(break-Down Voltage) strength are decreasing in particular, elastomer content [20]phr appeared remarkedly the more increase or decrease than others.

  • PDF