• Title/Summary/Keyword: Moisture Absorption Rate

Search Result 166, Processing Time 0.024 seconds

Effect of Hot Water Treatment Times on Moisture Absorption and Germination of Albizzia julibrissin Seeds (열탕처리시간이 자귀나무 종자의 수분흡수 및 발아에 미치는 영향)

  • Seo, Byeong-Soo;Kim, Sun-Young;Park, Woo-Jin;Choi, Chung-Ho
    • Korean Journal of Plant Resources
    • /
    • v.20 no.4
    • /
    • pp.267-271
    • /
    • 2007
  • This study was carried out to examine optimal hot water treatment time in Albizzia julibrissin seeds. Germination and moisture absorption characteristics among intact seeds, immersed seeds for 24 hours in distilled water and hot water treated seeds were surveyed. As result, treated seeds showed a highly significant difference with intact and immersed seeds (p<0.0l). Especially, treated seed for 2.0 minutes represented the highest percent of germination (PG). But mean germination time (MGT) did not have significant difference between non-treatment and treatments (p=0.502). Germination speed and germination performance index showed similar tendency with PG. In percent of moisture absorption (PMA) and moisture absorption rate constant (MARC) treatments had higher values than non-treatment whereas 2.0 minutes treatment was lower than non-treatment in initial moisture absorption rate (IMAR). In relation between germination properties and moisture absorption characteristics, all properties except MGT among germination properties had high correlations with PMA and MARC ($r=0.854{\sim}0.931$,p<0.01) whereas IMAR didn't have correlation.

A Study on the Long-term Absorption Rate of Organic Insulation Materials (유기질 단열재 장기 흡수율에 관한 연구)

  • Kim, Hae-na;Park, Jun-Seo;Shin, Joung-Hyeon;Hong, Sang-Hun;Jung, Ui-In;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.195-196
    • /
    • 2022
  • Insulation material absorption rate is closely related to thermal conductivity. In Korea, there is no study on the change of insulation material in a long-term continuous exposure environment. In this study, basic data on the long-term durability of insulation materials were obtained by measuring the absorption rate of insulation materials over time. For the purpose of providing, as a result of the measurement, PIR class2 No.2 and PIR noncombustible show similar absorption rate trends, which is thought to be due to the fact that both are made of rigid urethane foam, and flame retardant EPS has the highest absorption rate except for PF. This is thought to be because there is a space for absorption between the beads and the beads. In the case of XPS, it is thought that the reason for showing the lowest absorption rate is that because it is produced by extrusion, it has a high density and thus has less space for moisture to penetrate.

  • PDF

Fracture Behavior for Carbon Fiber Reinforced Plastic by Immersion (흡수에 따른 탄소섬유 강화수지의 파괴거동)

  • Kim, O. G.;Nam, K. W.;Ahn, B. H.
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.4
    • /
    • pp.402-410
    • /
    • 1996
  • Recently carbon fiber reinforced plastic(CFRP) has been used structural materials in corrosive environment such as for water, chemical tank and chemical pipes. However, mechanical properties of such materials may change when CFRP are exposed to corrosive environment for long periods of time. Therefore, it is important to understand the effect of moisture absorption on mechanical properties of the CFRP. In this study, degradation behavior of immersed carbon fiber/epoxy resin composite material was investigated using acoustic emission(AE) technique. Fracture toughness test are performed on the compact tension(CT) test specimens that are pilled by two types of laminates $[0^{\circ}_2$/$90^{\circ}_2]_3s$ and $[0^{\circ}_2$/$90^{\circ}_2]_6s$During the fracture toughness test, AE test was carried out to monitor the damage of CFRP by moisture absorption. In spite of the change of moisture absorption rate, the fracture toughness of CFRP was not change. As immersion time increased, AE event count numbers decreased in low amplitude range of AE for amplitude distribution histogram. The event in low amplitude range was known to be generated by debonding of matrix-fiber interface. Therefore, decrease of AE event count numbers in low amplitude range represents that debonding of matrix-fiber interface which was probably generated by moisture absorption.

  • PDF

Research on the Performance of Regenerator using Hot Water from Solar Water Heater(1st paper : On the Effect of Solution Temperature to Regeneration Rate) (태양열 온수기를 이용한 다목적 공조시스템의 재생효율에 관한 연구(제1보 액체흡수제 온도가 재생량에 미치는 영향))

  • Woo, Jong-Soo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.1
    • /
    • pp.53-61
    • /
    • 2004
  • Absorption potential of desiccant solution significantly decreases after absorbing moisture from humid air, and a regeneration process requires a great amount of energy to recover absorption potential of desiccant solution. In an effort to develop an efficient solar water heater, this study examines a regeneration process using hot water obtained from solar water heater to recover absorption potential by evaporating moisture in the liquid desiccant. In this paper, a solar absorption dehumidifying system with solar water heater is suggested to save the electricity for operating an air conditioner. LiGl(lithium chloride) solution was adopted as a liquid desiccant in the proposed system, and hot water obtained from the solar water heater was used for regenerating the liquid desiccant. As a result, it was clear that the dilute LiCl solution could be regenerated by hot water, and the regeneration rate depends mostly on temperature level of liquid desiccant. The regeneration rates were about 2.4kg/h with $40^{\circ}C$, 4.0kg/h with $50^{\circ}C$, and 6.2kg/h with $60^{\circ}C$ of hot water respectively.

Antimicrobial Properties of Knit made with PET and Ion Exchange Zeolite Nanocomposite Spun Yarn (PET와 이온교환 Zeolite 나노 복합 방적사로 제조한 니트의 항균성)

  • Jeon, Yongwook;Park, Youngmi
    • Textile Coloration and Finishing
    • /
    • v.33 no.1
    • /
    • pp.24-30
    • /
    • 2021
  • In this study, PET containing 3% silver ion-exchange zeolite was mixed with cotton in a ratio of 6:4 to prepare a spun yarn to evaluate the tensile strength, absorption speed, absorption rate, antibacterial property, and the efficiency of deodorization. As a result, the following conclusions were obtained. First, it can be confirmed that silver ion exchange zeolite is evenly distributed inside and on the surface of the antimicrobial PET-SF through SEM. It was found that the tensile strength between the CVC sample mixed with silver ion zeolite PET and cotton and the normal cotton 100% sample was slightly lower in the CVC sample. Although the absorption speed and water absorption rate were measured to find out the moisture characteristics, it was confirmed that there was no significant difference. The contact angle was slightly larger in the antimicrobial CVC sample, but the time it took for the moisture to completely penetrate into the knit fabric was 0.85 seconds. In addition, it was found that out of the total mixing ratio, 40% of antibacterial PET was spun with regular cotton to produce yarn, which had an excellent bacteria reduction rate of 99.9% and a deodorization efficiency of 85%.

Moisture Absorption and Strengths of Composite Skins cured on the Close Heated Mold (폐쇄형 가열 금형에서 경화된 복합재 외피의 수분흡수 및 강도특성)

  • Kyung-Su Kim;Hyeon-Seok Choe;Byeong-Su Kwak;Jin-Hwe Kweon
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.126-131
    • /
    • 2024
  • The moisture absorption rate and structural strength changes of oven-cured composite skin based on closed molds were studied. Moisture absorption was performed on specimens with and without filler applied. The specimens were exposed to moisture for up to 231 days. Tensile and compression tests were conducted with and without filler application. As a result of the test, the moisture absorption rates of the tensile and compressive specimens without filler were 2.4 and 0.3% higher, respectively, than those with the filler applied. The tensile and compressive strengths of the specimen without filler applied were average 305 MPa and 139 MPa, respectively, and the tensile and compressive strengths of the specimen with filler applied were 313 MPa and 166 MPa, respectively, appeared high.

Enzymatic Treatment of Polyamide Fiber by Alcalase (알칼라제를 이용한 폴리아미드 섬유의 효소가공)

  • Song, Yu-Sun;Song, Wha-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.35 no.8
    • /
    • pp.1006-1013
    • /
    • 2011
  • An enzymatic treatment method using alcalase was introduced to improve the moisture characteristic of the polyamide fiber. The alcalase treatment conditions such as the pH, treatment temperature, enzyme concentration, and treatment time were optimized by measuring the amino groups. The changes in the weight loss, tensile strength, moisture regain, water contact angle (WCA), and water absorption rate of the polyamide fiber with the changes in the alcalase treatment conditions were evaluated. The optimum alcalase treatment conditions for polyamide fiber were found to be a treatment temperature of 50oC, a treatment time of 50 minutes, an alcalase concentration of 10% (owf), and a pH of 7.0. The ethylenediaminetetraacetic acid (EDTA) and L-cysteine accelerated the activity of the enzyme; however, they did not have an effect on the amino group production of the fiber surface. The alcalase treatment of the polyamide fiber improved the fiber's moisture regain, WCA, and absorption rate due to the amino group on the fiber surface. The results showed that the alcalase treatment of polyamide fiber is an effective method to improve the moisture characteristic of the polyamide fiber.

A Study on the Moisture Content and Cracking Behavior of out side Exposed columns According to Drying Methods of Hnaok Buildings (한옥건축물의 건조방법에 따른 외진 노출 기둥의 함수율 및 균열 양상에 관한 연구)

  • Kim, Yun-Sang
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.21 no.1
    • /
    • pp.37-44
    • /
    • 2019
  • Recently, various tourist products using hanok have increased rapidly. In the meantime, there is a steady demand for Hanok architecture. However, there are many negative perceptions about wood deformation and biodeterioration. Wood deformation and biodeterioration are related to moisture content. And the cracks occur in the process of removing water from the wood. Therefore, this study investigates the moisture content and cracks of dried hanok made of wood according to the drying method of wood. Drying methods include natural seasoning and artificial seasoning. There was a difference in moisture removal depending on drying period and method of natural seasoning. Drying time should be about 3 years for natural seasoning, so the moisture content of the wood is stable. In addition, the moisture absorption rate was low even in a humid environment where the voids were removed. However, natural seasoning is time consuming. Artificial seasoning, on the other hand, can quickly remove moisture from the wood and reduce porosity, but it is costly. Cracks that occur during the drying of wood may become problematic in appearance and stability due to wider spacing over time. As a result, the difference in the moisture content of the timber depending on the drying method and drying period of the wood was maintained even after the formation. These gaps appeared to be differences in moisture absorption in a wet environment.

Study on the durability of fiber reinforced plastic by moisture aborsoption (흡수에 의한 FRP의 내구성에 관한 연구)

  • 문창권;구자삼
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.48-56
    • /
    • 1997
  • This work has been investigated in order to study the influence of the moisture absorption on the mechanical pf the glass fiber/epoxy resein composites and the carbon fiber/epoxy resein composites. The types of glass fiber used in the glass fiber/epoxy resein composites were randomly oriented fiber and plain fabric fiber. And carbon fiber.epoxy resein composites was laminated with fabric prepreg which was formed with carbon fiber and epoxy resein. Both composites were immersed up to 100 days in distilled water at $80^{\circ}C$, and then dried up to 3 days in an oven at 80$80^{\circ}C$. Both composites were measured for the weight gain of water(wt.%) and tensile strength through immersion and dry time. Consequently, it was found that the tensile strength of thw glass fiber/epoxy resein composites and the carbon fiber/epoxy resein composites were reduced proportionally to the moisture absortion rate. Also, the tensile strength of glass fiber composites was decreased more than that of the carbon fiber composites. Additionally, it was found that the tensile strength of all composites which decreased by moisture absorption were partly recovered by drying in an oven at 80$80^{\circ}C$.

  • PDF

A Study on the High Functional Finishing of Polyester Flat Fabrics Treated with Chitosan (키토산 처리한 폴리에스테르 편평사 직물의 고기능화 가공에 관한 연구)

  • 이석영;박성우;김삼수
    • Textile Coloration and Finishing
    • /
    • v.16 no.3
    • /
    • pp.22-30
    • /
    • 2004
  • The polyester fabrics were treated with the chitosan with various solubility in optimized treatment condition. The treatment method was discussed to be a high functional finishing for the polyester fabric to obtain the high moisture absorption and anti-microorganism property by evaluating the effect of the chitosan purification method on the yield and anti-microorganism property of the chitosan. On the other hand, soluble polyurethane was added to the chitosan treatment solution and/or plasma pretreatment was done. The addition of soluble polyurethane give a high add-on ratio as well as a linen like effect of treated polyester fabric. The results were as follows: 1. In the treatment of polyester fabric by the chitosan solution, a soluble PU resin and low temperature plasma treatment were done to obtain high binding force between the fabrics and the chitosan. The add-on rate and the moisture absorption ratio of the fabrics treated with the chitosan-PU after treated with the plasma slightly increased more than those of the fabrics treated with the chitosan only. 2. Anti-static property of the fabrics treated with the chitosan decreased rapidly with increasing of the chitosan concentration. The washing fastness of the fabrics treated with the chitosan-PU after treated with the plasma was better than those of the fabrics treated with chitosan only. The wrinkle resistance of the treated fabrics decreased constantly with the concentration of the chitosan. The bending rigidity of the treated fabrics increased greatly. On the treatment of polyester fabric under optimum condition, the microorganism reduction rate kept above 90% after 10times launderings. 3. As the polyester fabrics which has flat yam was used as a weft yams were treated with the chitosan-PU as give a functional finishing effects such as durability, moisture absorption, anti-static and anti- microorganism property. Treated polyester fabric showed a good functional finishing effect and a linen like property.